[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A174282
a(n) = 3^n mod M(n) where M(n) = A014963(n) is the exponential of the Mangoldt function.
1
0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0
OFFSET
1,1
COMMENTS
Appears to be always either 0 or 1.
This follows from Fermat's Little Theorem. - Charles R Greathouse IV, Feb 13 2011
LINKS
FORMULA
a(n) = A000244(n) mod A014963(n).
a(n) = 1 if n = p^k for k > 0 and p a prime not equal to 3, a(n) = 0 otherwise. - Charles R Greathouse IV, Feb 13 2011
MATHEMATICA
f[n_] := PowerMod[3, n - 1, Exp@ MangoldtLambda@ n]; Array[f, 105] (* Robert G. Wilson v, Jan 22 2015 *)
Table[mod[3^(n-1) , e^(MangoldtLambda[n]) ], {n, 1, 100}] (* G. C. Greubel, Nov 25 2015 *)
PROG
(PARI) vector(95, n, ispower(k=n, , &k); isprime(k)&k!=3) \\ Charles R Greathouse IV, Feb 13 2011
CROSSREFS
Sequence in context: A334820 A308185 A159689 * A189301 A123640 A022924
KEYWORD
nonn,easy
AUTHOR
Mats Granvik, Mar 15 2010
EXTENSIONS
More terms from Robert G. Wilson v, Jan 22 2015
STATUS
approved