[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157523
Triangle T(n, k, q) = (q*(n-k) +1)*T(n-1, k-1, q) + (q*k+1)*T(n-1, k, q) + q*A157522(n, k)*T(n-2, k-1, q), with T(n, 0, q) = T(n, n, q) = 1 and q = 1, read by rows.
3
1, 1, 1, 1, 5, 1, 1, 15, 15, 1, 1, 37, 95, 37, 1, 1, 82, 463, 463, 82, 1, 1, 173, 1910, 3799, 1910, 173, 1, 1, 356, 7096, 25672, 25672, 7096, 356, 1, 1, 723, 24645, 150994, 260519, 150994, 24645, 723, 1, 1, 1458, 81499, 804875, 2259903, 2259903, 804875, 81499, 1458, 1
OFFSET
0,5
FORMULA
T(n, k, q) = (q*(n-k) +1)*T(n-1, k-1, q) + (q*k+1)*T(n-1, k, q) + q*A157522(n, k)*T(n-2, k-1, q), with T(n, 0, q) = T(n, n, q) = 1 and q = 1.
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 5, 1;
1, 15, 15, 1;
1, 37, 95, 37, 1;
1, 82, 463, 463, 82, 1;
1, 173, 1910, 3799, 1910, 173, 1;
1, 356, 7096, 25672, 25672, 7096, 356, 1;
1, 723, 24645, 150994, 260519, 150994, 24645, 723, 1;
1, 1458, 81499, 804875, 2259903, 2259903, 804875, 81499, 1458, 1;
MATHEMATICA
f[n_, k_]= 1 + If[k<=Floor[n/4], k, If[Floor[n/4]<k<=Floor[n/2], Floor[n/2]-k, If[Floor[n/2]<k<=Floor[3*n/4], k-Floor[n/2], n-k]]];
A157522[n_, k_]:= f[n, k] +f[n, n-k] -1;
T[n_, k_, q_]:= T[n, k, q]= If[k==0 || k==n, 1, (q*(n-k) +1)*T[n-1, k-1, q] + (q*k+1)*T[n-1, k, q] + q*A157522[n, k]*T[n-2, k-1, q]];
Table[T[n, k, 1], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jan 23 2022 *)
PROG
(Sage)
def f(n, k):
if (k <= (n//4)): return k+1
elif ((n//4) < k <= (n//2)): return (n//2)-k+1
elif ((n//2) < k <= (3*n//4)): return k+1-(n//2)
else: return n-k+1
def A157522(n, k): return f(n, k) + f(n, n-k) - 1
@CachedFunction
def T(n, k, q):
if (k==0 or k==n): return 1
else: return (q*(n-k) +1)*T(n-1, k-1, q) + (q*k+1)*T(n-1, k, q) + q*A157522(n, k)*T(n-2, k-1, q);
flatten([[T(n, k, 1) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jan 23 2022
CROSSREFS
Cf. A007318 (q=0), this sequence (q=1).
Cf. A157522.
Sequence in context: A196019 A056940 A168288 * A141691 A157147 A347973
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Mar 02 2009
EXTENSIONS
Edited by G. C. Greubel, Jan 23 2022
STATUS
approved