[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A157037
Numbers with prime arithmetic derivative A003415.
25
6, 10, 22, 30, 34, 42, 58, 66, 70, 78, 82, 105, 114, 118, 130, 142, 154, 165, 174, 182, 202, 214, 222, 231, 238, 246, 255, 273, 274, 282, 285, 286, 298, 310, 318, 345, 357, 358, 366, 370, 382, 385, 390, 394, 399, 418, 430, 434, 442, 454, 455, 465, 474, 478
OFFSET
1,1
COMMENTS
Equivalently, solutions to n'' = 1, since n' = 1 iff n is prime. Twice the lesser of the twin primes, 2*A001359 = A108605, are a subsequence. - M. F. Hasler, Apr 07 2015
All terms are squarefree, because if there would be a prime p whose square p^2 would divide n, then A003415(n) = (A003415(p^2) * (n/p^2)) + (p^2 * A003415(n/p^2)) = p*[(2 * (n/p^2)) + (p * A003415(n/p^2))], which certainly is not a prime. - Antti Karttunen, Oct 10 2019
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10001 (first 1000 terms from Reinhard Zumkeller)
FORMULA
A010051(A003415(a(n))) = 1; A068346(a(n)) = 1; A099306(a(n)) = 0.
A003415(a(n)) = A328385(a(n)) = A241859(n); A327969(a(n)) = 3. - Antti Karttunen, Oct 19 2019
EXAMPLE
A003415(42) = A003415(2*3*7) = 2*3+3*7+7*2 = 41 = A000040(13), therefore 42 is a term.
MATHEMATICA
dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Total[n*f[[2]]/f[[1]]]]]; Select[Range[500], dn[dn[#]] == 1 &] (* T. D. Noe, Mar 07 2013 *)
PROG
(Haskell)
a157037 n = a157037_list !! (n-1)
a157037_list = filter ((== 1) . a010051' . a003415) [1..]
-- Reinhard Zumkeller, Apr 08 2015
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
isA157037(n) = isprime(A003415(n)); \\ Antti Karttunen, Oct 19 2019
(Python)
from itertools import count, islice
from sympy import isprime, factorint
def A157037_gen(): # generator of terms
return filter(lambda n:isprime(sum(n*e//p for p, e in factorint(n).items())), count(2))
A157037_list = list(islice(A157037_gen(), 20)) # Chai Wah Wu, Jun 23 2022
CROSSREFS
Cf. A189441 (primes produced by these numbers), A241859.
Cf. A192192, A328239 (numbers whose 2nd and numbers whose 3rd arithmetic derivative is prime).
Cf. A108605, A256673 (subsequences).
Subsequence of following sequences: A005117, A099308, A235991, A328234 (A328393), A328244, A328321.
Sequence in context: A102783 A369656 A365064 * A189992 A255746 A082917
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Feb 22 2009
STATUS
approved