[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156066
Numbers n with property that n^2 is a square arising in A154138.
2
2, 3, 9, 16, 52, 93, 303, 542, 1766, 3159, 10293, 18412, 59992, 107313, 349659, 625466, 2037962, 3645483, 11878113, 21247432, 69230716, 123839109, 403506183, 721787222, 2351806382, 4206884223, 13707332109, 24519518116, 79892186272
OFFSET
1,1
COMMENTS
Except for the first term, positive values of x (or y) satisfying x^2 - 6xy + y^2 + 23 = 0. - Colin Barker, Feb 08 2014
LINKS
Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Counting families of generalized balancing numbers, The Australasian Journal of Combinatorics (2020) Vol. 77, Part 3, 318-325.
FORMULA
a(n) = sqrt((A154138(n)^2 + A154138(n) + 6)/2).
a(1..4) = (2,3,9,16); a(n>4) = 6*a(n-2) - a(n-4).
G.f.: -x*(x-1)*(x+2)*(2*x+1) / ((x^2-2*x-1)*(x^2+2*x-1)). - Colin Barker, Feb 08 2014
a(n) = A006452(n-1) - A006452(n) + A006452(n+1). - Carl Najafi, Sep 27 2018
MAPLE
seq(coeff(series(-x*(x-1)*(x+2)*(2*x+1)/((x^2-2*x-1)*(x^2+2*x-1)), x, n+1), x, n), n = 1..30); # Muniru A Asiru, Sep 28 2018
MATHEMATICA
a[1]=2; a[2]=3; a[3]=9; a[4]=16; a[n_]:=a[n]=6*a[n-2]-a[n-4]; A1=Table[a[n], {n, 25}]
CoefficientList[Series[-(x - 1) (x + 2) (2 x + 1)/((x^2 - 2 x - 1) (x^2 + 2 x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 11 2014 *)
PROG
(PARI) Vec(-x*(x-1)*(x+2)*(2*x+1)/((x^2-2*x-1)*(x^2+2*x-1)) + O(x^100)) \\ Colin Barker, Feb 08 2014
(Magma) I:=[2, 3, 9, 16]; [n le 4 select I[n] else 6*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Feb 11 2014
(GAP) a:=[2, 3, 9, 16];; for n in [5..30] do a[n]:=6*a[n-2]-a[n-4]; od; a; # Muniru A Asiru, Sep 28 2018
CROSSREFS
Cf. A154138.
Sequence in context: A324014 A289452 A086771 * A143890 A270339 A272057
KEYWORD
nonn,easy
AUTHOR
Zak Seidov, Oct 21 2009
STATUS
approved