[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141290
Triangle read by rows, descending antidiagonals of a (1, 3, 5, ...) * (1, 4, 16, ...) multiplication table.
3
1, 3, 4, 5, 12, 16, 7, 20, 48, 64, 9, 28, 80, 192, 256, 11, 36, 112, 320, 768, 1024, 13, 44, 144, 448, 1280, 3072, 4096, 15, 52, 176, 576, 1792, 5120, 12288, 16384, 17, 60, 208, 704, 2304, 7168, 20480, 49152, 65536, 19, 68, 240, 832, 2816, 9216, 28672, 81920, 196608, 262144
OFFSET
1,2
COMMENTS
Binary representation of all terms ends in an even number of zeros (cf. A003159).
FORMULA
From Stefano Spezia, May 21 2024: (Start)
G.f. as array: x*y*(1 + y)/((1 - 4*x)*(1 - y)^2).
E.g.f. as array: (exp(4*x) - 1)*(exp(y)*(1 - 2*y) - 1)/4. (End)
EXAMPLE
Given the multiplication table (1, 3, 5, ...) * (1, 4, 16, ...); i.e., odd numbers as column headings, powers of 4 along the left border:
1, 3, 5, 7, ...
4, 12, 20, 28, ...
16, 48, 80, 112, ...
64, 192, 320, 448, ...
...
Rows of the triangle = descending antidiagonals of the array, getting:
1;
3, 4;
5, 12, 16;
7, 20, 48, 64;
9, 28, 80, 192, 256;
11, 36, 112, 320, 768, 1024;
13, 44, 144, 448, 1280, 3072, 4096;
15, 52, 176, 576, 1792, 5120, 122288, 16384;
...
MATHEMATICA
A[n_, k_]:=(2k-1)*4^(n-1); Table[A[k, n-k+1], {n, 10}, {k, n}]//Flatten (* Stefano Spezia, May 21 2024 *)
CROSSREFS
Sequence in context: A090829 A374221 A236244 * A010752 A049929 A262192
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Jun 22 2008
EXTENSIONS
a(14), a(36) corrected by Peter Munn, Aug 27 2019
STATUS
approved