[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A140735
Triangle read by rows, X^n * [1,0,0,0,...]; where X = a tridiagonal matrix with (1,2,3,...) in the main diagonal and (1,1,1,...) in the sub and subsubdiagonals.
11
1, 1, 1, 1, 1, 3, 5, 2, 1, 1, 7, 19, 16, 12, 3, 1, 1, 15, 65, 90, 95, 46, 22, 4, 1, 1, 31, 211, 440, 630, 461, 295, 100, 35, 5, 1, 1, 63, 665, 2002, 3801, 3836, 3156, 1556, 710, 185, 51, 6, 1, 1, 127, 2059, 8736, 21672, 28819, 29729, 19440, 11102, 4116, 1456, 308, 70
OFFSET
1,6
COMMENTS
T(m,k) is the number of achiral color patterns in a row or loop of length 2m-1 using exactly k different colors. Two color patterns are equivalent if we permute the colors. - Robert A. Russell, Mar 24 2018
FORMULA
G.f.(exponential in x, ordinary in t): exp(x+t*(exp(x)-1)+(1/2)*t^2*(exp(2*x)-1)). - Ira M. Gessel, Jan 30 2018
T(m,k) = [m>1]*(k*T(m-1,k)+T(m-1,k-1)+T(m-1,k-2)) + [m==1]*[k==1] - Robert A. Russell, Apr 24 2018
EXAMPLE
First few rows of the triangle are:
1;
1, 1, 1;
1, 3, 5, 2, 1;
1, 7, 19, 16, 12, 3, 1;
1, 15, 65, 90, 95, 46, 22, 4, 1;
1, 31, 211, 440, 630, 461, 295, 100, 35, 5, 1;
1, 63, 665, 2002, 3801, 3836, 3156, 1556, 710, 185, 51, 6, 1;
...
T(3,3)=5 is the number of achiral color patterns of length five using exactly three colors. These are AABCC, ABACA, ABBBC, ABCAB, and ABCBA for both rows and loops. - Robert A. Russell, Mar 24 2018
MATHEMATICA
(* Ach[n, k] is the number of achiral color patterns for a row or loop of n
colors containing k different colors *)
Ach[n_, k_] := Ach[n, k] = Which[0==k, Boole[0==n], 1==k, Boole[n>0],
OddQ[n], Sum[Binomial[(n-1)/2, i] Ach[n-1-2i, k-1], {i, 0, (n-1)/2}],
True, Sum[Binomial[n/2-1, i] (Ach[n-2-2i, k-1]
+ 2^i Ach[n-2-2i, k-2]), {i, 0, n/2-1}]]
Table[Ach[n, k], {n, 1, 13, 2}, {k, 1, n}] // Flatten
(* Robert A. Russell, Feb 06 2018 *)
Table[MatrixPower[Table[Switch[j-i, 0, i, 1, 1, 2, 1, _, 0],
{i, 1, 2 n - 1}, {j, 1, 2 n - 1}], n-1][[1]], {n, 1, 10}]
// Flatten (* Robert A. Russell, Mar 24 2018 *)
Aodd[m_, k_] := Aodd[m, k] = If[m > 1, k Aodd[m-1, k] + Aodd[m-1, k-1]
+ Aodd[m-1, k-2], Boole[m==1 && k==1]]
Table[Aodd[m, k], {m, 1, 10}, {k, 1, 2m-1}] // Flatten (* Robert A. Russell, Apr 24 2018 *)
CROSSREFS
Cf. A080337 (row sums), A140733, A140744.
Number of achiral color patterns of length even n in A293181.
Sequence in context: A342277 A327396 A021288 * A183206 A197521 A161865
KEYWORD
nonn,tabf
AUTHOR
Gary W. Adamson, May 25 2008
STATUS
approved