OFFSET
1,6
COMMENTS
T(m,k) is the number of achiral color patterns in a row or loop of length 2m-1 using exactly k different colors. Two color patterns are equivalent if we permute the colors. - Robert A. Russell, Mar 24 2018
LINKS
FORMULA
G.f.(exponential in x, ordinary in t): exp(x+t*(exp(x)-1)+(1/2)*t^2*(exp(2*x)-1)). - Ira M. Gessel, Jan 30 2018
T(m,k) = [m>1]*(k*T(m-1,k)+T(m-1,k-1)+T(m-1,k-2)) + [m==1]*[k==1] - Robert A. Russell, Apr 24 2018
EXAMPLE
First few rows of the triangle are:
1;
1, 1, 1;
1, 3, 5, 2, 1;
1, 7, 19, 16, 12, 3, 1;
1, 15, 65, 90, 95, 46, 22, 4, 1;
1, 31, 211, 440, 630, 461, 295, 100, 35, 5, 1;
1, 63, 665, 2002, 3801, 3836, 3156, 1556, 710, 185, 51, 6, 1;
...
T(3,3)=5 is the number of achiral color patterns of length five using exactly three colors. These are AABCC, ABACA, ABBBC, ABCAB, and ABCBA for both rows and loops. - Robert A. Russell, Mar 24 2018
MATHEMATICA
(* Ach[n, k] is the number of achiral color patterns for a row or loop of n
colors containing k different colors *)
Ach[n_, k_] := Ach[n, k] = Which[0==k, Boole[0==n], 1==k, Boole[n>0],
OddQ[n], Sum[Binomial[(n-1)/2, i] Ach[n-1-2i, k-1], {i, 0, (n-1)/2}],
True, Sum[Binomial[n/2-1, i] (Ach[n-2-2i, k-1]
+ 2^i Ach[n-2-2i, k-2]), {i, 0, n/2-1}]]
Table[Ach[n, k], {n, 1, 13, 2}, {k, 1, n}] // Flatten
(* Robert A. Russell, Feb 06 2018 *)
Table[MatrixPower[Table[Switch[j-i, 0, i, 1, 1, 2, 1, _, 0],
{i, 1, 2 n - 1}, {j, 1, 2 n - 1}], n-1][[1]], {n, 1, 10}]
// Flatten (* Robert A. Russell, Mar 24 2018 *)
Aodd[m_, k_] := Aodd[m, k] = If[m > 1, k Aodd[m-1, k] + Aodd[m-1, k-1]
+ Aodd[m-1, k-2], Boole[m==1 && k==1]]
Table[Aodd[m, k], {m, 1, 10}, {k, 1, 2m-1}] // Flatten (* Robert A. Russell, Apr 24 2018 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Gary W. Adamson, May 25 2008
STATUS
approved