[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134295
a(n) = Sum_{k=1..n} ((n-k)!*(k-1)! - (-1)^k).
1
2, 2, 6, 16, 65, 312, 1813, 12288, 95617, 840960, 8254081, 89441280, 1060369921, 13649610240, 189550368001, 2824077312000, 44927447040001, 760034451456000, 13622700994560001, 257872110354432000, 5140559166898176001
OFFSET
1,1
COMMENTS
According to the Generalized Wilson-Lagrange Theorem, a prime p divides (p-k)!*(k-1)! - (-1)^k for all integers k > 0. p divides a(p) for prime p. Quotients a(p)/p are listed in A134296(n) = {1, 2, 13, 259, 750371, 81566917, 2642791002353, 716984262871579, 102688143363690674087, ...}. p^2 divides a(p) for prime p = {7, 71}.
FORMULA
a(n) = Sum_{k=1..n} ((n-k)!*(k-1)! - (-1)^k).
MATHEMATICA
Table[ Sum[ (n-k)!*(k-1)! - (-1)^k, {k, 1, n} ], {n, 1, 30} ]
CROSSREFS
Cf. A007540, A007619 (Wilson quotients: ((p-1)!+1)/p).
Cf. A134296 (quotients a(p)/p).
Sequence in context: A230825 A060165 A303150 * A184845 A062833 A006250
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Oct 17 2007
STATUS
approved