[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Table (read by antidiagonals) where t(1,n) = t(m,1) = 1 and where t(m,n) = lcm(Sum_{k=1..m-1} t(k,n), Sum_{j=1..n-1} t(m,j)).
0

%I #11 Mar 04 2018 17:43:15

%S 1,1,1,1,1,1,1,2,2,1,1,4,3,4,1,1,8,30,30,8,1,1,16,36,35,36,16,1,1,32,

%T 1224,630,630,1224,32,1,1,64,14256,868700,675,868700,14256,64,1,1,128,

%U 1010880,4140952200,1174420350,1174420350,4140952200,1010880,128,1,1

%N Table (read by antidiagonals) where t(1,n) = t(m,1) = 1 and where t(m,n) = lcm(Sum_{k=1..m-1} t(k,n), Sum_{j=1..n-1} t(m,j)).

%e t(5,3) = lcm(Sum_{k=1..4} t(k,3), Sum_{j=1..2} t(5,j)) = lcm(1+2+3+30, 1+8) = lcm(36,9) = 36.

%t t[m_, n_] := t[m, n] = If[m == 1 || n == 1, 1,LCM[Sum[t[k, n], {k, m - 1}], Sum[t[m, j], {j, n - 1}]]];Flatten@Table[t[d + 1 - j, j], {d, 11}, {j, d}] (* _Ray Chandler_, Nov 19 2006 *)

%K nonn,tabl

%O 1,8

%A _Leroy Quet_, Nov 12 2006

%E Extended by _Ray Chandler_, Nov 19 2006