Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Nov 20 2015 05:11:06
%S 5,3,3,7,3,3,7,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
%T 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
%U 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3
%N Smallest prime factor of the odd Catalan number A038003(n).
%C A038003(n) = binomial(2^(n+1)-2, 2^n-1)/(2^n).
%C a(n) <> 3 iff the base-3 representation of 2^n-1 has no 2's. Conjecture: this only occurs for n = 2, 5, 8. I verified it up to n = 10^4. - _Robert Israel_, Nov 18 2015
%e a(2) = 5 because A038003(2) = 5.
%e a(3) = 3 because A038003(3) = 429 = 3*11*13.
%p f:= proc(n) local m;
%p m:= 2^n-1;
%p if has(convert(m,base,3),2) then return 3 fi;
%p min(numtheory:-factorset(binomial(2*m,m)/(m+1)));
%p end proc:
%p seq(f(n),n=2..1000); # _Robert Israel_, Nov 18 2015
%t f[n_] := Block[{p = 2, m = Binomial[2^(n+1)-2, 2^n-1]/(2^n)}, While[Mod[m, p] > 0, p = NextPrime@ p]; p]; Array[f, 27, 2] (* _Robert G. Wilson v_, Nov 14 2015 *)
%Y Cf. A038003, A000108.
%K nonn
%O 2,1
%A _Alexander Adamchuk_, Jul 04 2006
%E a(16)-a(28) from _Robert G. Wilson v_, Nov 14 2015
%E a(29)-a(86) from _Robert Israel_, Nov 18 2015