[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129922
Number of 3-Carlitz compositions of n (or, more generally p-Carlitz compositions, p > 1), i.e., words b_1^{i_1}b_2^{i_2}...b_k^{i_k} such that the b_j's and i_j's are positive integers for which Sum_{j=1..k} i_j * b_j = n and, for all j, i_j < p and if b_j = b_(j+1) then i_j + i_(j+1) is not equal to p.
2
1, 1, 3, 4, 12, 22, 51, 101, 225, 465, 1008, 2111, 4528, 9560, 20402, 43222, 92018, 195256, 415243, 881758, 1874288, 3981318, 8460906, 17975132, 38196045, 81152769, 172436680, 366376845, 778476016, 1654054258, 3514494256, 7467412436, 15866507485, 33712418692, 71630875356, 152198161794
OFFSET
0,3
COMMENTS
For p=2, the sequence enumerates Carlitz compositions, A003242.
LINKS
Sylvie Corteel and Paweł Hitczenko, Generalizations of Carlitz Compositions, Journal of Integer Sequences, Vol. 10 (2007), Article 07.8.8.
FORMULA
G.f.: 1/(1 - Sum_{k>0} (z^k/(1-z^k) - 3*z^(k*3)/(1-z^(k*3)))).
For general p the generating function is 1/(1 - Sum_{k>0}(z^k/(1-z^k) - p*z^(k*p)/(1-z^(k*p)))).
EXAMPLE
a(3)=4 because, for p=3, we can write:
3^{1},
1^{1} 2^{1},
2^{1} 1^{1},
1^{1} 1^{1} 1^{1}.
MAPLE
b:= proc(n, i, j) option remember;
`if`(n=0, 1, add(add(`if`(k=i and m+j=3, 0,
b(n-k*m, k, m)), m=1..min(2, n/k)), k=1..n))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..40); # Alois P. Heinz, Jul 22 2017
MATHEMATICA
b[n_, i_, j_] := b[n, i, j] = If[n == 0, 1, Sum[Sum[If[k == i && m + j == 3, 0, b[n - k m, k, m]], {m, 1, Min[2, n/k]}], {k, 1, n}]];
a[n_] := b[n, 0, 0];
a /@ Range[0, 40] (* Jean-François Alcover, Nov 10 2020, after Alois P. Heinz *)
PROG
(PARI) N = 66; x = 'x + O('x^N); p=3;
gf = 1/(1-sum(k=1, N, x^k/(1-x^k)-p*x^(k*p)/(1-x^(k*p))));
Vec(gf) /* Joerg Arndt, Apr 28 2013 */
CROSSREFS
Cf. A129921.
Cf. A003242.
Sequence in context: A075220 A075221 A295948 * A005221 A243391 A000206
KEYWORD
nonn
AUTHOR
Pawel Hitczenko (phitczenko(AT)math.drexel.edu), Jun 05 2007
EXTENSIONS
Added more terms, Joerg Arndt, Apr 28 2013
STATUS
approved