[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A129661
Denominators of the Engel partial sums for L(3, chi3), where L(s, chi3) is the Dirichlet L-function for the non-principal character modulo 3.
15
1, 2, 4, 8, 112, 10528, 3916416, 453977888, 5984725643520, 24757413551258752, 36544913291284069002240, 3209228105587401803500707840, 206085396642453387914503205007360
OFFSET
0,2
REFERENCES
Leonhard Euler, "Introductio in Analysin Infinitorum", First Part, Articles 176 and 292
FORMULA
chi3(k) = Kronecker(-3, k); chi3(k) is 0, 1, -1 when k reduced modulo 3 is 0, 1, 2, respectively; chi3 is A049347 shifted.
Series: L(3, chi3) = Sum_{k=1..infinity} chi3(k) k^{-3} = 1 - 1/2^3 + 1/4^3 - 1/5^3 + 1/7^3 - 1/8^3 + 1/10^3 - 1/11^3 + ...
Closed form: L(3, chi3) = 4 Pi^3/(81 sqrt(3)).
EXAMPLE
L(3, chi3) = 0.8840238117500798567430579168710118077... = 1/2 + 1/(2*2) + 1/(2*2*2) + 1/(2*2*2*14) + 1/(2*2*2*14*94) + ..., the partial sums of which are 0, 1/2, 3/4, 7/8, 99/112, 9307/10528, ...
MATHEMATICA
nmax = 100; prec = 2000 (* Adjust the precision depending on nmax. *); c = N[ 4 Pi^3/(81 Sqrt[3]), prec]; e = First@Transpose@NestList[{Ceiling[1/(#[[1]] #[[2]] - 1)], #[[1]] #[[2]] - 1}&, {Ceiling[1/c], c}, nmax - 1]; Denominator[ FoldList[Plus, 0, 1/Drop[ FoldList[Times, 1, e], 1 ] ] ]
KEYWORD
nonn,frac,easy
AUTHOR
Stuart Clary, Apr 30 2007
STATUS
approved