[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124931
Triangle read by rows: T(n,k) = (2*k-1)*binomial(n,k) (1 <= k <= n).
1
1, 2, 3, 3, 9, 5, 4, 18, 20, 7, 5, 30, 50, 35, 9, 6, 45, 100, 105, 54, 11, 7, 63, 175, 245, 189, 77, 13, 8, 84, 280, 490, 504, 308, 104, 15, 9, 108, 420, 882, 1134, 924, 468, 135, 17, 10, 135, 600, 1470, 2268, 2310, 1560, 675, 170, 19, 11, 165, 825, 2310, 4158, 5082, 4290, 2475, 935, 209, 21
OFFSET
1,2
COMMENTS
Sum of entries in row n = 1 + (n-1)*2^n = A000337(n).
EXAMPLE
First few rows of the triangle:
1;
2, 3;
3, 9, 5;
4, 18, 20, 7;
5, 30, 50, 35, 9;
6, 45, 100, 105, 54, 11;
...
MAPLE
T:=(n, k)->(2*k-1)*binomial(n, k): for n from 1 to 12 do seq(T(n, k), k=1..n) od; # yields sequence in triangular form
MATHEMATICA
Table[(2*k-1)*Binomial[n, k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Nov 19 2019 *)
PROG
(PARI) for(n=1, 12, for(k=1, n, print1((2*k-1)*binomial(n, k), ", "))) \\ G. C. Greubel, Jun 08 2017
(Magma) [(2*k-1)*Binomial(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 19 2019
(Sage) [[(2*k-1)*binomial(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Nov 19 2019
(GAP) Flat(List([1..12], n-> List([1..n], k-> (2*k-1)*Binomial(n, k) ))); # G. C. Greubel, Nov 19 2019
CROSSREFS
Cf. A000337.
Sequence in context: A059083 A207626 A232324 * A210226 A209163 A124932
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Nov 12 2006
EXTENSIONS
Edited by N. J. A. Sloane, Nov 29 2006
STATUS
approved