[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112399
a(n) = Sum_{k=1..n, gcd(k,n)=1} mu(k), where mu(k) = A008683(k) (the Moebius function).
4
1, 1, 0, 0, -1, 0, -1, -2, -2, -1, -1, -2, -2, -3, -2, -3, -1, -4, -2, -5, -4, -3, -1, -6, -3, -4, -3, -5, -1, -6, -3, -7, -5, -5, -3, -7, -1, -5, -3, -6, 0, -9, -2, -7, -6, -6, -2, -11, -4, -9, -5, -7, -2, -12, -5, -8, -5, -5, 0, -13, -1, -7, -6, -8, -4, -12, -1, -8, -5, -10, -2, -14, -3, -8, -9, -9, -4, -14, -3, -12, -7, -8, -3, -17
OFFSET
1,8
EXAMPLE
The positive integers <= 10 and coprime to 10 are 1, 3, 7 and 9. So a(10) = mu(1) + mu(3) + mu(7) + mu(9) = 1 - 1 - 1 + 0 = -1.
MATHEMATICA
quetMu[n_] := Sum[KroneckerDelta[GCD[i, n], 1] MoebiusMu[i], {i, n}]; Table[quetMu[n], {n, 85}] (* Alonso del Arte, Nov 28 2011 *)
PROG
(PARI) a(n)=sum(k=1, n, if(gcd(n, k)==1, moebius(k), 0)) \\ Lambert Herrgesell, Dec 09 2005
CROSSREFS
Cf. A008683.
Sequence in context: A329462 A153864 A345128 * A349040 A165123 A372428
KEYWORD
sign
AUTHOR
Leroy Quet, Dec 06 2005
EXTENSIONS
More terms from Lambert Herrgesell and Matthew Conroy, Dec 09 2005
STATUS
approved