[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A111035
Numbers n that divide the sum of the first n nonzero Fibonacci numbers.
11
1, 2, 24, 48, 72, 77, 96, 120, 144, 192, 216, 240, 288, 319, 323, 336, 360, 384, 432, 480, 576, 600, 648, 672, 720, 768, 864, 960, 1008, 1080, 1104, 1152, 1200, 1224, 1296, 1320, 1344, 1368, 1440, 1517, 1536, 1680, 1728, 1800, 1920, 1944, 2016, 2064, 2160
OFFSET
1,2
COMMENTS
The sum of the first n nonzero Fibonacci numbers is F(n+2)-1, sequence A000071. Knott discusses the factorization of these numbers. Most of the terms are divisible by 24. - T. D. Noe, Oct 10 2005, edited by M. F. Hasler, Mar 01 2020
All terms are either multiples of 24 (cf. A124455) or odd (cf. A331976) or congruent to 2 (mod 12), cf. A331870 where this statement is proved. - M. F. Hasler, Mar 01 2020
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Daniel Yaqubi and Amirali Fatehizadeh, Some results on average of Fibonacci and Lucas sequences, arXiv:2001.11839 [math.CO], 2020.
FORMULA
{n: n| A000071(n+2)}. - R. J. Mathar, Feb 05 2020
EXAMPLE
2 | 4, 24 | 121392, 48 | 12586269024, ... [Corrected by M. F. Hasler, Feb 06 2020]
MAPLE
select(n-> irem(combinat[fibonacci](n+2)-1, n)=0, [$1..3000])[]; # G. C. Greubel, Feb 03 2020
MATHEMATICA
Select[Range[3000], Mod[Fibonacci[ #+2]-1, # ]==0&] (* T. D. Noe, Oct 06 2005 *)
PROG
(PARI) is(n)=((Mod([1, 1; 1, 0], n))^(n+2))[1, 2]==1 \\ Charles R Greathouse IV, Feb 04 2013
(Magma) [1] cat [n: n in [1..3000] | Fibonacci(n+2) mod n eq 1 ]; // G. C. Greubel, Feb 03 2020
(Sage) [n for n in (1..3000) if mod(fibonacci(n+2), n)==1 ] # G. C. Greubel, Feb 03 2020
(GAP) Filtered([1..3000], n-> ((Fibonacci(n+2)-1) mod n)=0 ); # G. C. Greubel, Feb 03 2020
CROSSREFS
See A101907 for another version.
Cf. A111058 (the analog for Lucas numbers).
Cf. A124455 (k for a(n) = 24k), A124456 (other a(n)), A331976 (odd a(n)), A331870 (even a(n) != 24k).
Sequence in context: A181283 A368360 A073215 * A349188 A249277 A002552
KEYWORD
nonn
AUTHOR
Joseph L. Pe, Oct 05 2005
EXTENSIONS
More terms from Rick L. Shepherd and T. D. Noe, Oct 06 2005
STATUS
approved