OFFSET
1,1
COMMENTS
FORMULA
a(n) = 2 * Sum[k=0..[n/2]] binomial(n-1, k) * ( binomial(n-1, k)*(binomial(2n+1-2k, n+1)-3*binomial(2n-1-2k, n+1)) + binomial(n-1, k+1)*(binomial(2n-2k, n+1)-3*binomial(2n-2k-2, n+1)) )
Conjecture: n^2*a(n) -3*n*(2*n-1)*a(n-1) -3*(n-1)*(5*n-12)*a(n-2) -8*(n-3)^2*a(n-3)=0. - R. J. Mathar, Jul 26 2014
a(n) ~ 3^(3/2) * 2^(3*n - 1) / (Pi*n). - Vaclav Kotesovec, Nov 09 2024
MATHEMATICA
b = Binomial; a[n_] := 2*Sum[b[n-1, k]*(b[n-1, k]*(b[2*n+1-2*k, n+1] - 3* b[2*n-1-2*k, n+1]) + b[n-1, k+1]*(b[2*n-2*k, n+1] - 3*b[2*n-2*k-2, n+1]) ), {k, 0, n/2}]; Array[a, 20] (* Jean-François Alcover, Dec 04 2015, adapted from PARI *)
PROG
(PARI) a(n) = 2 * sum(k=0, n\2, binomial(n-1, k) * ( binomial(n-1, k)*(binomial(2*n+1-2*k, n+1)-3*binomial(2*n-1-2*k, n+1)) + binomial(n-1, k+1)*(binomial(2*n-2*k, n+1)-3*binomial(2*n-2*k-2, n+1)) ))
CROSSREFS
KEYWORD
nonn
AUTHOR
Max Alekseyev, Aug 04 2005
STATUS
approved