OFFSET
0,4
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
FORMULA
T(n, k) = Sum_{j=0..(n-k)} 2*(j+1)*(k-1)^j*C(2*(n-k)+1, n-k-j)/(n-k+j+2).
Column k has g.f. x^k*c(x)/(1-k*x*c(x)) where c(x) is the g.f. of A000108.
T(n,0) = Catalan(n), T(n,1) = Catalan(n), T(n,n) = 1. - G. C. Greubel, Aug 28 2017
EXAMPLE
Rows begin
1;
1, 1;
2, 2, 1;
5, 5, 3, 1;
14, 14, 10, 4, 1;
42, 42, 35, 17, 5, 1;
MATHEMATICA
T[n_, 0] := CatalanNumber[n]; T[n_, 1] := CatalanNumber[n]; T[n_, n_] := 1; T[n_, k_] := Sum[2*(j + 1)*(k - 1)^j*Binomial[2 (n - k) + 1, n - k - j]/(n - k + j + 2), {j, 0, n - k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 28 2017 *)
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Jul 22 2005
STATUS
approved