Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Oct 01 2014 15:42:20
%S 1,4,6,2,8,3,7,5,11,31,9,127,17,709,5381,52711,13,648391,59,9737333,
%T 174440041,3657500101,277,88362852307,2428095424619,75063692618249,
%U 2586559730396077
%N Transposition sequence of the dispersion of the primes.
%C A self-inverse permutation of the positive integers.
%H Neil Fernandez, <a href="http://www.borve.org/primeness/FOP.html">An order of primeness, F(p)</a>
%H Neil Fernandez, <a href="/A006450/a006450.html">An order of primeness</a> [cached copy, included with permission of the author]
%H Neil Fernandez, <a href="http://www.borve.org/primeness/intro.html">The Exploring Primeness Project</a>
%H Robert G. Wilson v, <a href="/A114538/a114538.txt">The northwest corner of the Primeness array.</a>
%F Suppose T is a rectangular array consisting of positive integers, each exactly once. The transposition sequence of T is here defined by placing T(i, j) in position T(j, i) for all i and j.
%e Start with the northwest corner of T:
%e 1 2 3 5 11 31 127 709 5381 52711 648391
%e 4 7 17 59 277 1787 15299 167449 2269733 37139213 718064159
%e 6 13 41 179 1063 8527 87803 1128889 17624813 326851121 7069067389
%e 8 19 67 331 2221 19577 219613 3042161 50728129 997525853 22742734291
%e 9 23 83 431 3001 27457 319211 4535189 77557187 1559861749 36294260117
%e 10 29 109 599 4397 42043 506683 7474967 131807699 2824711961 64988430769
%e 12 37 157 919 7193 72727 919913 14161729 259336153 5545806481 136395369829
%e a(1)=1 because 1=T(1,1) and T(1,1)=1.
%e a(2)=4 because 2=T(1,2) and T(2,1)=4.
%e a(3)=6 because 3=T(1,3) and T(3,1)=6.
%e a(13)=17 because 13=T(3,2) and T(2,3)=17.
%Y Cf. A114537.
%Y Columns 1-6 above: A018252, A007821, A049078, A049079, A049080, A049081.
%Y Rows 1-7 above: A007097, A057450, A057451, A057452, A057453, A057456, A057457.
%K nonn
%O 1,2
%A _Clark Kimberling_, Dec 07 2005
%E a(22)-a(27) from _Robert G. Wilson v_, Dec 24 2005