[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A103713
Decimal expansion of the area of the surface generated by revolving about the y-axis that part of the curve y = log x lying in the 4th quadrant.
1
7, 2, 1, 1, 7, 9, 9, 7, 2, 4, 2, 0, 7, 0, 4, 6, 9, 6, 4, 6, 8, 7, 7, 3, 2, 7, 6, 9, 8, 0, 0, 6, 6, 7, 6, 7, 9, 0, 2, 7, 0, 5, 7, 6, 1, 7, 9, 7, 6, 0, 5, 0, 0, 6, 4, 6, 0, 8, 8, 2, 6, 7, 4, 6, 1, 3, 1, 3, 0, 3, 6, 4, 8, 6, 1, 0, 9, 7, 6, 9, 6, 5, 1, 4, 6, 2, 1, 9, 2, 1, 0, 9, 7, 7, 6, 9, 8, 2, 9, 3, 2, 9, 9, 3, 4
OFFSET
1,1
COMMENTS
Equal to Pi times its analog for the parabola (see A103710).
REFERENCES
C. E. Love, Differential and Integral Calculus, 4th ed., Macmillan, 1950, p. 288.
S. Reese, A universal parabolic constant, 2004, preprint.
FORMULA
Pi*(sqrt(2) + log(1 + sqrt(2))).
EXAMPLE
7.21179972420704696468773276980066767902705761797605...
MATHEMATICA
RealDigits[Pi*(Sqrt[2]+Log[1+Sqrt[2]]), 10, 120][[1]] (* or *) RealDigits[Pi* (Sqrt[2]+ArcSinh[1]), 10, 120][[1]] (* Harvey P. Dale, May 02 2011 *)
PROG
(PARI) Pi*(sqrt(2) + log(1 + sqrt(2))) \\ Michel Marcus, Jul 06 2015
CROSSREFS
Cf. A000796*A103710. See also A103714.
Sequence in context: A001204 A177969 A021585 * A197184 A089129 A100957
KEYWORD
cons,easy,nonn
AUTHOR
Sylvester Reese and Jonathan Sondow, Feb 21 2005
STATUS
approved