[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) = binomial(n,k)*(n-1)!/(k-1)!.
44

%I #211 Dec 21 2024 00:21:35

%S 1,2,1,6,6,1,24,36,12,1,120,240,120,20,1,720,1800,1200,300,30,1,5040,

%T 15120,12600,4200,630,42,1,40320,141120,141120,58800,11760,1176,56,1,

%U 362880,1451520,1693440,846720,211680,28224,2016,72,1,3628800,16329600

%N Triangle read by rows: T(n,k) = binomial(n,k)*(n-1)!/(k-1)!.

%C T(n,k) is the number of partially ordered sets (posets) on n elements that consist entirely of k chains. For example, T(4, 3)=12 since there are exactly 12 posets on {a,b,c,d} that consist entirely of 3 chains. Letting ab denote a<=b and using a slash "/" to separate chains, the 12 posets can be given by a/b/cd, a/b/dc, a/c/bd, a/c/db, a/d/bc, a/d/cb, b/c/ad, b/c/da, b/d/ac, b/d/ca, c/d/ab and c/d/ba, where the listing of the chains is arbitrary (e.g., a/b/cd = a/cd/b =...cd/b/a). - _Dennis P. Walsh_, Feb 22 2007

%C Also the matrix product |S1|.S2 of Stirling numbers of both kinds.

%C This Lah triangle is a lower triangular matrix of the Jabotinsky type. See the column e.g.f. and the D. E. Knuth reference given in A008297. - _Wolfdieter Lang_, Jun 29 2007

%C The infinitesimal matrix generator of this matrix is given in A132710. See A111596 for an interpretation in terms of circular binary words and generalized factorials. - _Tom Copeland_, Nov 22 2007

%C Three combinatorial interpretations: T(n,k) is (1) the number of ways to split [n] = {1,...,n} into a collection of k nonempty lists ("partitions into sets of lists"), (2) the number of ways to split [n] into an ordered collection of n+1-k nonempty sets that are noncrossing ("partitions into lists of noncrossing sets"), (3) the number of Dyck n-paths with n+1-k peaks labeled 1,2,...,n+1-k in some order. - _David Callan_, Jul 25 2008

%C Given matrices A and B with A(n,k) = T(n,k)*a(n-k) and B(n,k) = T(n,k)*b(n-k), then A*B = D where D(n,k) = T(n,k)*[a(.)+b(.)]^(n-k), umbrally. - _Tom Copeland_, Aug 21 2008

%C An e.g.f. for the row polynomials of A(n,k) = T(n,k)*a(n-k) is exp[a(.)* D_x * x^2] exp(x*t) = exp(x*t) exp[(.)!*Lag(.,-x*t,1)*a(.)*x], umbrally, where [(.)! Lag(.,x,1)]^n = n! Lag(n,x,1) is a normalized Laguerre polynomial of order 1. - _Tom Copeland_, Aug 29 2008

%C Triangle of coefficients from the Bell polynomial of the second kind for f = 1/(1-x). B(n,k){x1,x2,x3,...} = B(n,k){1/(1-x)^2,...,(j-1)!/(1-x)^j,...} = T(n,k)/(1-x)^(n+k). - _Vladimir Kruchinin_, Mar 04 2011

%C The triangle, with the row and column offset taken as 0, is the generalized Riordan array (exp(x), x) with respect to the sequence n!*(n+1)! as defined by Wang and Wang (the generalized Riordan array (exp(x), x) with respect to the sequence n! is Pascal's triangle A007318, and with respect to the sequence n!^2 is A021009 unsigned). - _Peter Bala_, Aug 15 2013

%C For a relation to loop integrals in QCD, see p. 33 of Gopakumar and Gross and Blaizot and Nowak. - _Tom Copeland_, Jan 18 2016

%C Also the Bell transform of (n+1)!. For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 27 2016

%C Also the number of k-dimensional flats of the n-dimensional Shi arrangement. - _Shuhei Tsujie_, Apr 26 2019

%C The numbers T(n,k) appear as coefficients when expanding the rising factorials (x)^k = x(x+1)...(x+k-1) in the basis of falling factorials (x)_k = x(x-1)...(x-k+1). Specifically, (x)^n = Sum_{k=1..n} T(n,k) (x)_k. - _Jeremy L. Martin_, Apr 21 2021

%H Reinhard Zumkeller, <a href="/A105278/b105278.txt">Rows n = 1..100 of triangle, flattened</a>

%H J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, <a href="http://arxiv.org/abs/1307.2010">Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure</a>, arXiv:1307.2010 [math.CO], 2013.

%H Paul Barry, <a href="http://arxiv.org/abs/1105.3043">Eulerian polynomials as moments, via exponential Riordan arrays</a>, arXiv preprint arXiv:1105.3043 [math.CO], 2011, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Barry7/barry172.html">J. Int. Seq. 14 (2011) # 11.9.5</a>

%H J-P. Blaizot and M. Nowak, <a href="http://arxiv.org/abs/0801.1859">Large N_c confinement and turbulence</a>, arXiv:0801.1859 [hep-th], 2008.

%H David Callan, <a href="http://arxiv.org/abs/0711.4841">Sets, Lists and Noncrossing Partitions</a>, arXiv:0711.4841 [math.CO], 2007-2008.

%H P. Codara, O. M. D'Antona, and P. Hell, <a href="http://arxiv.org/abs/1308.1700">A simple combinatorial interpretation of certain generalized Bell and Stirling numbers</a>, arXiv preprint arXiv:1308.1700 [cs.DM], 2013.

%H Tom Copeland, <a href="https://tcjpn.wordpress.com/2008/06/12/mathemagical-forests/">Mathemagical Forests</a>, <a href="https://tcjpn.wordpress.com/2010/12/28/14/">Addendum to Mathemagical Forests</a>, <a href="https://tcjpn.wordpress.com/2011/11/16/a-generalized-dobinski-relation-and-the-confluent-hypergeometric-fcts/">The Inverse Mellin Transform, Bell Polynomials, a Generalized Dobinski Relation, and the Confluent Hypergeometric Functions</a>, <a href="http://tcjpn.wordpress.com/2015/08/23/a-class-of-differential-operators-and-the-stirling-numbers/">A Class of Differential Operators and the Stirling Numbers</a>

%H S. Daboul, J. Mangaldan, M. Z. Spivey and P. Taylor, <a href="http://math.pugetsound.edu/~mspivey/Exp.pdf">The Lah Numbers and the n-th Derivative of exp(1/x)</a>, Math. Mag., 86 (2013), 39-47.

%H G. H. E. Duchamp et al., <a href="http://dx.doi.org/10.1088/1742-6596/30/1/014">Feynman graphs and related Hopf algebras</a>, J. Phys. (Conf Ser) 30 (2006) 107-118.

%H R. Gopakumar and D. Gross, <a href="http://arxiv.org/abs/hep-th/9411021">Mastering the master field</a>, arXiv:hep-th/9411021, 1994.

%H G. Hetyei, <a href="http://arxiv.org/abs/0909.4352">Meixner polynomials of the second kind and quantum algebras representing su(1,1)</a>, arXiv preprint arXiv:0909.4352 [math.QA], 2009, p. 4. - From _Tom Copeland_, Oct 01 2015

%H Milan Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Janjic/janjic22.html">Some classes of numbers and derivatives</a>, JIS 12 (2009) 09.8.3.

%H D. E. Knuth, <a href="http://arxiv.org/abs/math/9207221">Convolution polynomials</a>, The Mathematica J., 2 (1992), 67-78.

%H Shi-Mei Ma, <a href="http://arxiv.org/abs/1208.3104">Some combinatorial sequences associated with context-free grammars</a>, arXiv:1208.3104v2 [math.CO], 2012. - From _N. J. A. Sloane_, Aug 21 2012

%H MacTutor History of Mathematics archive: <a href="http://www-history.mcs.st-andrews.ac.uk/history/Biographies/Lah.html">Biography of Ivo Lah</a>.

%H Robert S. Maier, <a href="https://arxiv.org/abs/2308.10332">Boson Operator Ordering Identities from Generalized Stirling and Eulerian Numbers</a>, arXiv:2308.10332 [math.CO], 2023. See p. 19.

%H N. Nakashima and S. Tsujie, <a href="https://arxiv.org/abs/1904.09748">Enumeration of Flats of the Extended Catalan and Shi Arrangements with Species</a>, arXiv:1904.09748 [math.CO], 2019.

%H Mathias Pétréolle and Alan D. Sokal, <a href="https://arxiv.org/abs/1907.02645">Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions</a>, arXiv:1907.02645 [math.CO], 2019.

%H Tilman Piesk, <a href="https://commons.wikimedia.org/wiki/File:Lah_numbers.svg">Illustration of the first four rows</a>

%H Kornelia Ufniarz and Grzegorz Siudem, <a href="https://arxiv.org/abs/2008.00244">Combinatorial origins of the canonical ensemble</a>, arXiv:2008.00244 [math-ph], 2020.

%H W. Wang and T. Wang, <a href="https://doi.org/10.1016/j.disc.2007.12.037">Generalized Riordan arrays</a>, Discrete Mathematics, Vol. 308, No. 24, 6466-6500.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Lah_number">Lah number</a>

%F T(n,k) = Sum_{m=n..k} |S1(n,m)|*S2(m,k), k>=n>=1, with Stirling triangles S2(n,m):=A048993 and S1(n,m):=A048994.

%F T(n,k) = C(n,k)*(n-1)!/(k-1)!.

%F Sum_{k=1..n} T(n,k) = A000262(n).

%F n*Sum_{k=1..n} T(n,k) = A103194(n) = Sum_{k=1..n} T(n,k)*k^2.

%F E.g.f. column k: (x^(k-1)/(1-x)^(k+1))/(k-1)!, k>=1.

%F Recurrence from Sheffer (here Jabotinsky) a-sequence [1,1,0,...] (see the W. Lang link under A006232): T(n,k)=(n/k)*T(n-1,m-1) + n*T(n-1,m). - _Wolfdieter Lang_, Jun 29 2007

%F The e.g.f. is, umbrally, exp[(.)!* L(.,-t,1)*x] = exp[t*x/(1-x)]/(1-x)^2 where L(n,t,1) = Sum_{k=0..n} T(n+1,k+1)*(-t)^k = Sum_{k=0..n} binomial(n+1,k+1)* (-t)^k / k! is the associated Laguerre polynomial of order 1. - _Tom Copeland_, Nov 17 2007

%F For this Lah triangle, the n-th row polynomial is given umbrally by

%F n! C(B.(x)+1+n,n) = (-1)^n C(-B.(x)-2,n), where C(x,n)=x!/(n!(x-n)!),

%F the binomial coefficient, and B_n(x)= exp(-x)(xd/dx)^n exp(x), the n-th Bell / Touchard / exponential polynomial (cf. A008277). E.g.,

%F 2! C(-B.(-x)-2,2) = (-B.(x)-2)(-B.(x)-3) = B_2(x) + 5*B_1(x) + 6 = 6 + 6x + x^2.

%F n! C(B.(x)+1+n,n) = n! e^(-x) Sum_{j>=0} C(j+1+n,n)x^j/j! is a corresponding Dobinski relation. See the Copeland link for the relation to inverse Mellin transform. - _Tom Copeland_, Nov 21 2011

%F The row polynomials are given by D^n(exp(x*t)) evaluated at x = 0, where D is the operator (1+x)^2*d/dx. Cf. A008277 (D = (1+x)*d/dx), A035342 (D = (1+x)^3*d/dx), A035469 (D = (1+x)^4*d/dx) and A049029 (D = (1+x)^5*d/dx). - _Peter Bala_, Nov 25 2011

%F T(n,k) = Sum_{i=k..n} A130534(n-1,i-1)*A008277(i,k). - _Reinhard Zumkeller_, Mar 18 2013

%F Let E(x) = Sum_{n >= 0} x^n/(n!*(n+1)!). Then a generating function is exp(t)*E(x*t) = 1 + (2 + x)*t + (6 + 6*x + x^2)*t^2/(2!*3!) + (24 + 36*x + 12*x^2 + x^3)*t^3/(3!*4!) + ... . - _Peter Bala_, Aug 15 2013

%F P_n(x) = L_n(1+x) = n!*Lag_n(-(1+x);1), where P_n(x) are the row polynomials of A059110; L_n(x), the Lah polynomials of A105278; and Lag_n(x;1), the Laguerre polynomials of order 1. These relations follow from the relation between the iterated operator (x^2 D)^n and ((1+x)^2 D)^n with D = d/dx. - _Tom Copeland_, Jul 23 2018

%F Dividing each n-th diagonal by n!, where the main diagonal is n=1, generates the Narayana matrix A001263. - _Tom Copeland_, Sep 23 2020

%F T(n,k) = A089231(n,n-k). - _Ron L.J. van den Burg_, Dec 12 2021

%e T(1,1) = C(1,1)*0!/0! = 1,

%e T(2,1) = C(2,1)*1!/0! = 2,

%e T(2,2) = C(2,2)*1!/1! = 1,

%e T(3,1) = C(3,1)*2!/0! = 6,

%e T(3,2) = C(3,2)*2!/1! = 6,

%e T(3,3) = C(3,3)*2!/2! = 1,

%e Sheffer a-sequence recurrence: T(6,2)= 1800 = (6/3)*120 + 6*240.

%e B(n,k) =

%e 1/(1-x)^2;

%e 2/(1-x)^3, 1/(1-x)^4;

%e 6/(1-x)^4, 6/(1-x)^5, 1/(1-x)^6;

%e 24/(1-x)^5, 36/(1-x)^6, 12/(1-x)^7, 1/(1-x)^8;

%e The triangle T(n,k) begins:

%e n\k 1 2 3 4 5 6 7 8 9 ...

%e 1: 1

%e 2: 2 1

%e 3: 6 6 1

%e 4: 24 36 12 1

%e 5: 120 240 120 20 1

%e 6: 720 1800 1200 300 30 1

%e 7: 5040 15120 12600 4200 630 42 1

%e 8: 40320 141120 141120 58800 11760 1176 56 1

%e 9: 362880 1451520 1693440 846720 211680 28224 2016 72 1

%e ...

%e Row n=10: [3628800, 16329600, 21772800, 12700800, 3810240, 635040, 60480, 3240, 90, 1]. - _Wolfdieter Lang_, Feb 01 2013

%p The triangle: for n from 1 to 13 do seq(binomial(n,k)*(n-1)!/(k-1)!,k=1..n) od;

%p the sequence: seq(seq(binomial(n,k)*(n-1)!/(k-1)!,k=1..n),n=1..13);

%p # The function BellMatrix is defined in A264428.

%p # Adds (1, 0, 0, 0, ...) as column 0.

%p BellMatrix(n -> (n+1)!, 9); # _Peter Luschny_, Jan 27 2016

%t nn = 9; a = x/(1 - x); f[list_] := Select[list, # > 0 &]; Flatten[Map[f, Drop[Range[0, nn]! CoefficientList[Series[Exp[y a], {x, 0, nn}], {x, y}], 1]]] (* _Geoffrey Critzer_, Dec 11 2011 *)

%t nn = 9; Flatten[Table[(j - k)! Binomial[j, k] Binomial[j - 1, k - 1], {j, nn}, {k, j}]] (* _Jan Mangaldan_, Mar 15 2013 *)

%t rows = 10;

%t t = Range[rows]!;

%t T[n_, k_] := BellY[n, k, t];

%t Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Jun 23 2018, after _Peter Luschny_ *)

%t T[n_, n_] := 1; T[n_, k_] /;0<k<n := T[n, k] = k(k+1)/(n-k) T[n, k+1];

%t Flatten@Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* _Oliver Seipel_, Dec 06 2024 *)

%o (Haskell)

%o a105278 n k = a105278_tabl !! (n-1) !! (k-1)

%o a105278_row n = a105278_tabl !! (n-1)

%o a105278_tabl = [1] : f [1] 2 where

%o f xs i = ys : f ys (i + 1) where

%o ys = zipWith (+) ([0] ++ xs) (zipWith (*) [i, i + 1 ..] (xs ++ [0]))

%o -- _Reinhard Zumkeller_, Sep 30 2014, Mar 18 2013

%o (Magma) /* As triangle */ [[Binomial(n,k)*Factorial(n-1)/Factorial(k-1): k in [1..n]]: n in [1.. 15]]; // _Vincenzo Librandi_, Oct 31 2014

%o (Perl) use ntheory ":all"; say join ", ", map { my $n=$_; map { stirling($n,$_,3) } 1..$n; } 1..9; # _Dana Jacobsen_, Mar 16 2017

%o (GAP) Flat(List([1..10],n->List([1..n],k->Binomial(n,k)*Factorial(n-1)/Factorial(k-1)))); # _Muniru A Asiru_, Jul 25 2018

%Y Cf. A000262, A103194, A105220.

%Y Triangle of Lah numbers (A008297) unsigned.

%Y Cf. A111596 (signed triangle with extra n=0 row and m=0 column).

%Y Cf. A130561 (for a natural refinement).

%Y Cf. A094638 (for differential operator representation).

%Y Cf. A248045 (central terms), A002868 (row maxima).

%Y Cf, A059110.

%Y Cf. A001263, A008277.

%Y Cf. A089231 (triangle with mirrored rows).

%Y Cf. A271703 (triangle with extra n=0 row and m=0 column).

%K easy,nonn,tabl

%O 1,2

%A _Miklos Kristof_, Apr 25 2005

%E Stirling comments and e.g.f.s from _Wolfdieter Lang_, Apr 11 2007