[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105150
Approximation to leading digit of n-th Fibonacci number.
0
0, 1, 1, 2, 3, 5, 8, 1, 2, 3, 5, 8, 1, 2, 3, 5, 8, 1, 2, 3, 5, 8, 1, 2, 3, 5, 8, 1, 2, 3, 5, 8, 1, 2, 3, 5, 8, 1, 2, 3, 5, 8, 1, 2, 3, 5, 8, 1, 2, 3, 5, 8, 1, 2, 3, 5, 8, 1, 2, 3, 5, 8, 1, 2, 3, 5, 8, 1, 2, 3, 5, 8, 1, 2, 3, 5, 8, 1, 2, 3, 5, 8, 1, 2, 3, 5, 8, 1, 2, 3, 5, 8, 1, 2, 3, 5, 8, 1, 2, 3, 5, 8, 1, 2, 3
OFFSET
0,4
COMMENTS
a(0) = 1, a(1) = a(2) = 1 and for n > 2:
a(n) = floor(w/10) + (w mod 10)*0^floor(w/10) where
w = (x+y)*0^(z-1) + y + z*0^floor((11-z)/10),
x = a(n-3), y = a(n-2) and z = a(n-1);
a(n) = A008963(n) = A000030(A000045(n)) for n<=14.
EXAMPLE
n=11, x=2, y=3, z=5: w = (2+3) * 0^(5-1)+3+5*0^[(11-5)/10] = 5*0^4+3+5*0^0 = 0+3+5*1 = 8, a(11) = [8/10] + (8 mod 10) * 0^[8/10] = 0 + 8*0^0 = 8;
n=12, x=3, y=5, z=8: w = (3+5) * 0^(8-1)+5+8*0^[(11-8)/10] = 8*0^7+5+8*0^0 = 0+5+8*1 = 13, a(12) = [13/10] + (13 mod 10) * 0^[13/10] = 1 + 3*0^1 = 1;
n=13, x=5, y=8, z=1: w = (5+8) * 0^(1-1)+8+1*0^[(11-1)/10] = 13*0^0+8+1*0^1 = 13*1+8+1*0 = 21, a(13) = [21/10] + (21 mod 10) * 0^[21/10] = 2 + 1*0^2 = 2.
CROSSREFS
Sequence in context: A136740 A105994 A120496 * A008963 A031324 A226251
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, Apr 10 2005
STATUS
approved