[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A104248
Lengths of successive runs of 1's in the Thue-Morse sequence A010060.
5
2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2
OFFSET
1,1
COMMENTS
Also lengths of successive runs of 0's in the Thue-Morse sequence A010059.
Also lengths of successive runs of 2's in the Thue-Morse sequence A001285.
A variant of A036577, suggested by p. 4421 of Grytczuk.
LINKS
Jaroslaw Grytczuk, Thue type problems for graphs, points and numbers, Discrete Math., 308 (2008), 4419-4429.
FORMULA
a(n) = A026465(2n).
EXAMPLE
A010060 begins 011010011001011010010110011010011... so the runs of 1's have lengths 2 1 2 1 2 1 1 2 2 1 2 1 2 2 1 1 2 1 ...
MATHEMATICA
Map[Length, Most[Split[ThueMorse[Range[500]]]][[;;;; 2]]] (* Paolo Xausa, Dec 19 2023 *)
Length/@DeleteCases[Split[ThueMorse[Range[450]]], _?(#[[1]]==0&)] (* Harvey P. Dale, Nov 09 2024 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Aug 05 2008
EXTENSIONS
Edited and extended by Ray Chandler, Aug 08 2008
STATUS
approved