[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Molien series for complete weight enumerators of self-dual codes over GF(9).
0

%I #8 Oct 04 2012 10:28:50

%S 1,1,2,8,27,71,197,482,1060,2241,4429,8241,14788,25473,42288,68302,

%T 107329,164450,246870,363341,525037,746901,1046759,1446661,1974912,

%U 2664696,3556123,4699051,6151182,7980924,10271230,13117013,16629061,20939082,26196340,32572742

%N Molien series for complete weight enumerators of self-dual codes over GF(9).

%C The invariant ring for a 9-dimensional group +-SP_2(9) of order 1440.

%H G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.

%p (Maple code for Molien series:)

%p u1 := 1 + 2*t^6 + 17*t^8 + 36*t^10 + 89*t^12 + 167*t^14 + 278*t^16 + 428*t^18 + 590*t^20 + 704*t^22 + 760*t^24 + 745*t^26 + 643*t^28 + 504*t^30 + 365*t^32 + 223*t^34 + 118*t^36 + 56*t^38 + 23*t^40 + 6*t^42 + 4*t^44 + t^46;

%p u2 := (1-t^2)*(1-t^4)*(1-t^6)^4*(1-t^8)*(1-t^10)^2; MS := u1/u2;

%K nonn

%O 0,3

%A _N. J. A. Sloane_, Mar 30 2004