OFFSET
2,1
COMMENTS
The reference contains a simple proof that there are no 1's in this sequence.
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, Sections B31, B33.
LINKS
Robert Israel, Table of n, a(n) for n = 2..10000
EXAMPLE
In row 8, the interior numbers 8, 28, 56 and 70; gcd(8, 28) = 4; gcd(8, 56) = 8; gcd(8, 70) = 2; gcd(28, 56) = 28; gcd(28, 70) = 14; gcd(56, 70) = 14. The smallest of these is 2, so a(8) = 2.
MAPLE
seq(min(seq(igcd(n, binomial(n, k)), k=1..floor(n/2))), n=2..100); # Robert Israel, Jun 17 2014
PROG
(PARI) a(n) = {v = vector(n\2, i, binomial(n, i)); mgcd = n; for (i=1, #v, for (j=i+1, #v, mgcd = min(gcd(v[i], v[j]), mgcd); ); ); return (mgcd); } \\ Michel Marcus, Jun 16 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
David Wasserman, Mar 13 2004
STATUS
approved