[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A091963
a(n) is the smallest gcd of two interior numbers on row n of Pascal's triangle ("interior" means that the 1's at the ends of the rows are excluded).
3
2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 3, 13, 2, 3, 2, 17, 2, 19, 4, 3, 2, 23, 3, 5, 2, 3, 4, 29, 6, 31, 2, 3, 2, 5, 4, 37, 2, 3, 5, 41, 6, 43, 4, 3, 2, 47, 3, 7, 2, 3, 4, 53, 2, 5, 7, 3, 2, 59, 4, 61, 2, 7, 2, 5, 6, 67, 4, 3, 10, 71, 4, 73, 2, 3, 4, 7, 2, 79, 5, 3, 2, 83, 12, 5, 2, 3, 4, 89, 9, 7, 4, 3, 2, 5, 3
OFFSET
2,1
COMMENTS
The reference contains a simple proof that there are no 1's in this sequence.
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, Sections B31, B33.
LINKS
EXAMPLE
In row 8, the interior numbers 8, 28, 56 and 70; gcd(8, 28) = 4; gcd(8, 56) = 8; gcd(8, 70) = 2; gcd(28, 56) = 28; gcd(28, 70) = 14; gcd(56, 70) = 14. The smallest of these is 2, so a(8) = 2.
MAPLE
seq(min(seq(igcd(n, binomial(n, k)), k=1..floor(n/2))), n=2..100); # Robert Israel, Jun 17 2014
PROG
(PARI) a(n) = {v = vector(n\2, i, binomial(n, i)); mgcd = n; for (i=1, #v, for (j=i+1, #v, mgcd = min(gcd(v[i], v[j]), mgcd); ); ); return (mgcd); } \\ Michel Marcus, Jun 16 2013
CROSSREFS
Cf. A014410.
Sequence in context: A356838 A079879 A071889 * A067695 A285336 A273282
KEYWORD
nonn
AUTHOR
David Wasserman, Mar 13 2004
STATUS
approved