%I #16 Jan 17 2025 09:14:33
%S 0,0,0,0,1,1,1,0,1,1,1,0,1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,
%T 1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,0,1,0,1,1,1,1,1,0,
%U 1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,1
%N Characteristic function of A091242: 1 if the n-th GF(2)[X] polynomial is reducible, 0 otherwise.
%H Antti Karttunen, <a href="/A091247/b091247.txt">Table of n, a(n) for n = 0..65537</a>
%H A. Karttunen, <a href="/A091247/a091247.scm.txt">Scheme-program for computing this sequence.</a>
%H <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>
%H <a href="/index/Ge#GF2X">Index entries for sequences operating on GF(2)[X]-polynomials</a>
%F a(n) = A066247(A091203(n)) = A066247(A091205(n)).
%o (PARI) a(n) = if (n<2, 0, ! polisirreducible(Mod(1,2)*Pol(binary(n)))); \\ _Michel Marcus_, Apr 12 2015
%Y Cf. A066247, A091203, A091205, A091246.
%Y Complementary to A091225. Partial sums give A091245.
%K nonn
%O 0,1
%A _Antti Karttunen_, Jan 03 2004