OFFSET
0,1
COMMENTS
a(n) = -(-1)^[n/2]*A110036(n)/2 for n>=2, where A110036 gives the partial quotients of the continued fraction expansion of 1 + Sum_{n>=0} 1/x^(2^n). - Paul D. Hanna, Jul 09 2005
LINKS
O. J. Rodseth and J. A. Sellers, On a Restricted m-Non-Squashing Partition Function, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.4.
N. J. A. Sloane and J. A. Sellers, On non-squashing partitions, arXiv:math/0312418 [math.CO], 2003.
N. J. A. Sloane and J. A. Sellers, On non-squashing partitions, Discrete Math., 294 (2005), 259-274.
FORMULA
b(0) == 1; if n is odd, b(n) == b(n-1) + 1; b(8m+2) == 1; b(8m+6) == 0; b(16m+4) == 0; b(16m+12) == 1; for m>0, b(16m) == b(8m), b(32m+8) == 0, b(32m+24) == 1. In other words, for m>0, b(8m) is the value of the bit immediately to the left of the rightmost 1 when m is written in binary.
a(n) = (-1)^floor(n/2)*A110037(n). - Paul D. Hanna, Jul 09 2005
MATHEMATICA
nmax = 104; f = 1 + x/(1 - x) + Sum[x^(3*2^(k - 1))/Product[1 - x^(2^j), {j, 0, k}], {k, 1, Log[2, nmax]}];
a[n_] := Mod[SeriesCoefficient[f, {x, 0, n}], 2];
Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Jul 26 2018 *)
PROG
(PARI) {a(n)=(-1)^(n\2)*polcoeff(1+x-x^2*(1+x)/(1+x^2)+ sum(k=1, #binary(n), x^(3*2^(k-1))/prod(j=0, k, 1+x^(2^j)+x*O(x^n))), n)} /* Paul D. Hanna */
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 20 2003
STATUS
approved