Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #131 Feb 02 2024 04:18:57
%S 0,1,0,2,0,1,0,0,1,0,2,0,1,0,1,0,2,0,1,0,0,1,0,2,0,1,0,2,0,1,0,0,1,0,
%T 2,0,1,0,1,0,2,0,1,0,0,1,0,2,0,1,0,0,1,0,2,0,1,0,1,0,2,0,1,0,0,1,0,2,
%U 0,1,0,2,0,1,0,0,1,0,2,0,1,0,1,0,2,0,1,0,0,1,0,2,0,1,0,1,0,2,0,1,0,0,1,0,2
%N Tribonacci word: limit S(infinity), where S(0) = 0, S(1) = 0,1, S(2) = 0,1,0,2 and for n >= 0, S(n+3) = S(n+2) S(n+1) S(n).
%C An Arnoux-Rauzy or episturmian word.
%C From _N. J. A. Sloane_, Jul 10 2018: (Start)
%C The initial terms in a form suitable for copying:
%C 0,1,0,2,0,1,0,0,1,0,2,0,1,0,1,0,2,0,1,0,0,1,0,2,0,1,0,2,0,1,0,0,1,0,2,0,1,
%C 0,1,0,2,0,1,0,0,1,0,2,0,1,0,0,1,0,2,0,1,0,1,0,2,0,1,0,0,1,0,2,0,1,0,2,0,1,
%C 0,0,1,0,2,0,1,0,1,0,2,0,1,0,0,1,0,2,0,1,0,1,0,2,0,1,0,0,1,0,2,0,1,0,2,0,1,
%C 0,0,1,0,2,0,1,0,1,0,2,0,1,0,0,1,0,2,0,1,0,0,1,0,2,0,1,0,1,0,2,0,1,0,0,1,0,
%C 2,0,1,0,2,0,1,0,0,1,0,2,0,1,0,1,0,2,0,1,0,0,1,0,2,0,1,0,2,0,1,0,0,1,0,2,0,
%C 1,0,1,0,2,0,1,0,0,1,0,2,0,1,0,0,1,0,2,0,1,0,1,0,2,0,1,0,0,1,0,2,0,1,0,2,0,
%C 1,0,0,1,0,2,0,1,0,1,0,2,0,1,0,0,1,0,2,0,1,0,1,0,2,0,1,0,0,1,0,2,0,1,0,2,0,
%C 1,0,0,1,0,2,0,1,0,1,0,2,0,1,0,0,1,0,2,0,1,0,0,1,0,2,0,1,0,1,0,2,0,1,0,0,1,
%C ...
%C Let TTW(a,b,c) denote this sequence written over the alphabet {a,b,c}. It begins:
%C a,b,a,c,a,b,a,a,b,a,c,a,b,a,b,a,c,a,b,a,a,b,a,c,a,b,a,c,a,b,a,a,b,a,c,a,b,
%C a,b,a,c,a,b,a,a,b,a,c,a,b,a,a,b,a,c,a,b,a,b,a,c,a,b,a,a,b,a,c,a,b,a,c,a,b,
%C a,a,b,a,c,a,b,a,b,a,c,a,b,a,a,b,a,c,a,b,a,b,a,c,a,b,a,a,b,a,c,a,b,a,c,a,b,
%C a,a,b,a,c,a,b,a,b,a,c,a,b,a,a,b,a,c,a,b,a,a,b,a,c,a,b,a,b,a,c,a,b,a,a,b,a,
%C c,a,b,a,c,a,b,a,a,b,a,c,a,b,a,b,a,c,a,b,a,a,b,a,c,a,b,a,c,a,b,a,a,b,a,c,a,
%C b,a,b,a,c,a,b,a,a,b,a,c,a,b,a,a,b,a,c,a,b,a,b,a,c,a,b,a,a,b,a,c,a,b,a,c,a,
%C b,a,a,b,a,c,a,b,a,b,a,c,a,b,a,a,b,a,c,a,b,a,b,a,c,a,b,a,a,b,a,c,a,b,a,c,a,
%C b,a,a,b,a,c,a,b,a,b,a,c,a,b,a,a,b,a,c,a,b,a,a,b,a,c,a,b,a,b,a,c,a,b,a,a,b,
%C ... (End)
%C From _Wolfdieter Lang_, Aug 14 2018: (Start)
%C The substitution sequence 0 -> 0, 1; 1-> 0, 2; 2 -> 0 read as an irregular triangle with rows l >= 1 and length T(l+2), with the tribonacci numbers T = A000073, leads to the tribonacci tree TriT with level TriT(l) for l >= 1 given by a(0), a(1), ..., a(T(l+2)-1).
%C E.g., l = 4: 0 1 0 2 0 1 0 with T(6) = 7 leaves (nodes). See the example below.
%C This tree can be used to find the tribonacci representation of nonnegative n given in A278038, call it ZTri(n) (Z for generalized Zeckendorf), by replacing every 2 by 1, and reading from bottom to top, omitting the final 0, except for n = 0 which is represented by 0. See the example below. (End)
%D The entry A092782 has a more complete list of references and links. - _N. J. A. Sloane_, Aug 17 2018
%D J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 246.
%H N. J. A. Sloane, <a href="/A080843/b080843.txt">Table of n, a(n) for n = 0..20000</a>
%H Jean Berstel and J. Karhumaki, <a href="http://www-igm.univ-mlv.fr/~berstel/Articles/2003TutorialCoWdec03.pdf">Combinatorics on words - a tutorial</a>, Bull. EATCS, #79 (2003), pp. 178-228.
%H Nataliya Chekhova, Pascal Hubert, and Ali Messaoudi, <a href="http://www.numdam.org/item?id=JTNB_2001__13_2_371_0">Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci</a>, Journal de théorie des nombres de Bordeaux, 13.2 (2001): 371-394.
%H D. Damanik and L. Q. Zamboni, <a href="https://arxiv.org/abs/math/0208137">Arnoux-Rauzy subshifts: linear recurrence, powers and palindromes</a>, arXiv:math/0208137 [math.CO], 2002.
%H F. Michel Dekking, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Dekking/dekk4.html">Morphisms, Symbolic Sequences, and Their Standard Forms</a>, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.1.
%H F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, <a href="https://www.combinatorics.org/ojs/index.php/eljc/article/view/v27i1p52/8039">Queens in exile: non-attacking queens on infinite chess boards</a>, Electronic J. Combin., 27:1 (2020), #P1.52.
%H Eric Duchêne and Michel Rigo, <a href="http://dx.doi.org/10.1051/ita:2007039">A morphic approach to combinatorial games: the Tribonacci case</a>. RAIRO - Theoretical Informatics and Applications, 42, 2008, pp 375-393. doi:10.1051/ita:2007039. [Also available <a href="http://archive.numdam.org/item/ITA_2008__42_2_375_0">here</a>]
%H Robbert Fokkink and Dan Rust, <a href="https://doi.org/10.1007/s00182-022-00824-1">Queen reflections: a modification of Wythoff Nim</a>, Int'l J. Game Theory (2022).
%H Wolfdieter Lang, <a href="https://arxiv.org/abs/1810.09787">The Tribonacci and ABC Representations of Numbers are Equivalent</a>, arXiv:1810.09787v1 [math.NT], 2018.
%H Joseph Meleshko, Pascal Ochem, Jeffrey Shallit, and Sonja Linghui Shan, <a href="https://arxiv.org/abs/2207.10171">Pseudoperiodic Words and a Question of Shevelev</a>, arXiv:2207.10171 [math.CO], 2022.
%H Aayush Rajasekaran, Narad Rampersad and Jeffrey Shallit, <a href="https://dx.doi.org/10.1007/978-3-319-66396-8_3">Overpals, Underlaps, and Underpals</a>, In: Brlek S., Dolce F., Reutenauer C., Vandomme É. (eds) Combinatorics on Words, WORDS 2017, Lecture Notes in Computer Science, vol 10432.
%H Gérard Rauzy, <a href="https://doi.org/10.24033/bsmf.1957">Nombres algébriques et substitutions</a>, Bull. Soc. Math. France 110.2 (1982): 147-178. See page 148.
%H Bo Tan and Zhi-Ying Wen, <a href="http://dx.doi.org/10.1016/j.ejc.2006.07.007">Some properties of the Tribonacci sequence</a>, European Journal of Combinatorics, 28 (2007) 1703-1719.
%H O. Turek, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Turek/turek3.html">Abelian Complexity Function of the Tribonacci Word</a>, J. Int. Seq. 18 (2015) # 15.3.4
%H <a href="/index/Fi#FIXEDPOINTS">Index entries for sequences that are fixed points of mappings</a>
%F Fixed point of morphism 0 -> 0, 1; 1 -> 0, 2; 2 -> 0.
%F a(n) = A092782(n+1) - 1. - _Joerg Arndt_, Sep 14 2013
%e From _Joerg Arndt_, Mar 12 2013: (Start)
%e The first few steps of the substitution are
%e Start: 0
%e Rules:
%e 0 --> 01
%e 1 --> 02
%e 2 --> 0
%e -------------
%e 0: (#=1)
%e 0
%e 1: (#=2)
%e 01
%e 2: (#=4)
%e 0102
%e 3: (#=7)
%e 0102010
%e 4: (#=13)
%e 0102010010201
%e 5: (#=24)
%e 010201001020101020100102
%e 6: (#=44)
%e 01020100102010102010010201020100102010102010
%e 7: (#=81)
%e 010201001020101020100102010201001020101020100102010010201010201001020102010010201
%e (End)
%e From _Wolfdieter Lang_, Aug 14 2018: (Start)
%e The levels l of the tree TriT begin (the branches (edges) have been omitted):
%e Substitution rule: 0 -> 0 1; 1 -> 0 2; 2 -> 0.
%e l=1: 0
%e l=2: 0 1
%e l=3: 0 1 0 2
%e l=4: 0 1 0 2 0 1 0
%e l=5: 0 1 0 2 0 1 0 0 1 0 2 0 1
%e ...
%e ----------------------------------------------------------------------------------
%e n = 0 1 2 3 4 5 6 7 8 9 10 11 12
%e The tribonacci representation of n >= 0 (A278038; here at level 5 for n = 0.. 12) is obtained by reading from bottom to top (along the branches not shown) replacing 2 with 1, omitting the last 0 except for n = 0.
%e 0 1 0 1 0 1 0 0 1 0 1 0 1
%e 1 1 0 0 1 0 0 1 1 0 0
%e 1 1 1 0 0 0 0 1 1
%e 1 1 1 1 1 1
%e E.g., ZTri(9) = A278038(9) = 1010. (End)
%p M:=17; S[1]:=`0`; S[2]:=`01`; S[3]:=`0102`;
%p for n from 4 to M do S[n]:=cat(S[n-1], S[n-2], S[n-3]); od:
%p t0:=S[M]: l:=length(t0); for i from 1 to l do lprint(i,substring(t0,i..i)); od:
%p # _N. J. A. Sloane_, Nov 01 2006
%p # A version that uses the letters a,b,c:
%p M:=10; B[1]:=`a`; B[2]:=`ab`; B[3]:=`abac`;
%p for n from 4 to M do B[n]:=cat(B[n-1], B[n-2], B[n-3]); od:
%p B[10]; # _N. J. A. Sloane_, Oct 30 2018
%t Nest[Flatten[ # /. {0 -> {0, 1}, 1 -> {0, 2}, 2 -> {0}}] &, {0}, 8] (* updated by _Robert G. Wilson v_, Nov 07 2010 *)
%t SubstitutionSystem[{0->{0,1},1->{0,2},2->{0}},{0},{8}]//Flatten (* _Harvey P. Dale_, Nov 21 2021 *)
%o (PARI)
%o strsub(s, vv, off=0)=
%o {
%o my( nl=#vv, r=[], ct=1 );
%o while ( ct <= #s,
%o r = concat(r, vv[ s[ct] + (1-off) ] );
%o ct += 1;
%o );
%o return( r );
%o }
%o t=[0]; for (k=1, 10, t=strsub( t, [[0,1], [0,2], [0]], 0 ) ); t
%o \\ _Joerg Arndt_, Sep 14 2013
%Y Cf. A003849 (the Fibonacci word), A092782.
%Y See A092782 for a version over the alphabet {1,2,3}.
%Y See A278045 for another construction.
%Y Cf. A000073, A278038.
%Y First differences: A317950. Partial sums: A319198.
%K nonn,easy
%O 0,4
%A _N. J. A. Sloane_, Mar 29 2003
%E More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 06 2003