[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080842
Numbers in the x/3 + 1 conjecture: Repeat until 1 is reached: if x is divisible by 3 then divide by 3, otherwise add 1.
0
1, 3, 1, 1, 5, 6, 2, 3, 1, 6, 2, 3, 1, 2, 3, 1, 8, 9, 3, 1, 9, 3, 1, 3, 1, 11, 12, 4, 5, 6, 2, 3, 1, 12, 4, 5, 6, 2, 3, 1, 4, 5, 6, 2, 3, 1, 14, 15, 5, 6, 2, 3, 1, 15, 5, 6, 2, 3, 1, 5, 6, 2, 3, 1, 17, 18, 6, 2, 3, 1, 18, 6, 2, 3, 1, 6, 2, 3, 1, 20, 21, 7, 8, 9, 3, 1, 21, 7, 8, 9, 3, 1, 7, 8, 9, 3, 1, 23, 24
OFFSET
1,2
COMMENTS
These numbers converge to various last-3-digit endings and only two last-2-digit numbers: 2,1 or 3,1.
EXAMPLE
The trajectories starting at x=2, 3, 4 etc. are (3,1), (1), (5,6,2,3,1), (6,2,3,1), (2,3,1), (8,9,3,1) etc. Each "1" marks the end of a trajectory.
MATHEMATICA
Join[{1}, Flatten[Table[Rest[NestWhileList[If[Divisible[#, 3], #/3, #+1]&, n, #!=1&]], {n, 2, 30}]]] (* Harvey P. Dale, Feb 02 2012 *)
PROG
(PARI) mult3p1(n, p) = { print1(1" "); for(j=1, n, x=j; while(x>1, if(x%3==0, x/=3, x = x*p+1 ) ; print1(x" ") ; ); ) ; print1(" ") ; } { mult3p1(30, 1) ; } - R. J. Mathar, Feb 01 2008
CROSSREFS
Sequence in context: A294582 A294589 A204027 * A368211 A216948 A183944
KEYWORD
easy,nonn,tabf
AUTHOR
Cino Hilliard, Mar 28 2003
EXTENSIONS
Edited and corrected by R. J. Mathar, Feb 01 2008
STATUS
approved