[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073728
a(n) = Sum_{k=0..n} S(k), where S(n) are the tribonacci generalized numbers A001644.
2
3, 4, 7, 14, 25, 46, 85, 156, 287, 528, 971, 1786, 3285, 6042, 11113, 20440, 37595, 69148, 127183, 233926, 430257, 791366, 1455549, 2677172, 4924087, 9056808, 16658067, 30638962, 56353837, 103650866, 190643665, 350648368, 644942899
OFFSET
0,1
LINKS
Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, Linear recurrence sequences with indices in arithmetic progression and their sums, arXiv:1505.06339 [math.NT], 2015.
FORMULA
a(n) = a(n-1) + a(n-2) + a(n-3), a(0)=3, a(1)=4, a(2)=7.
G.f.: (3+x)/(1-x-x^2-x^3).
a(n) = 3*T(n+1) + T(n), where T(n) are the tribonacci numbers A000073.
a(n) = (S(n+3) - S(n+1))/2, where S(n) = A001644(n). - Michael D. Weiner, Mar 27 2015
a(n) = Sum_{r root of x^3-x^2-x-1} r^n/(-r^2+r+2). - Fabian Pereyra, Nov 21 2024
MAPLE
A:= gfun[rectoproc]({a(n)=a(n-1)+a(n-2)+a(n-3), a(0)=3, a(1)=4, a(2)=7}, a(n), remember):
seq(A(n), n=0..100); # Robert Israel, Mar 26 2015
MATHEMATICA
CoefficientList[Series[(3+x)/(1-x-x^2-x^3), {x, 0, 40}], x]
PROG
(Magma) I:=[3, 4, 7]; [n le 3 select I[n] else Self(n-1)+Self(n-2) +Self(n-3): n in [1..40]]; // Vincenzo Librandi, Mar 27 2015
(PARI) my(x='x+O('x^40)); Vec((3+x)/(1-x-x^2-x^3)) \\ G. C. Greubel, Apr 09 2019
(Sage) ((3+x)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 09 2019
CROSSREFS
Partial sums of A001644.
Cf. A000073.
Sequence in context: A319548 A095063 A003242 * A132753 A132407 A070035
KEYWORD
easy,nonn,changed
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Aug 06 2002
STATUS
approved