OFFSET
0,19
COMMENTS
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..20000 (first 10000 terms from T. D. Noe)
FORMULA
From Reinhard Zumkeller, Jan 21 2010: (Start)
a(A100592(n)) = n;
a(m) < n for m < A100592(n);
a(n) = Sum_{i=1..floor(n/2)} [Omega(i) == 2] * [Omega(n-i) == 2], where Omega = A001222 and [] is the Iverson Bracket. - Wesley Ivan Hurt, Apr 04 2018
a(n) = [x^n y^2] 1/Product_{j>=1} (1-y*x^A001358(j)). - Alois P. Heinz, May 21 2021
MATHEMATICA
lim = 10000;
s = Select[Range[lim], PrimeOmega[#] == 2 &];
c = Tally[ Sort[ Map[ Total, Union[Subsets[s, {2}],
Table[{s[[i]], s[[i]]}, {i, 1, Length[s]}]]]]];
a = Table[0, lim];
i=1; While[c[[i]] [[1]]<=lim, a[[c[[i]] [[1]]]]=c[[i]] [[2]]; i++];
a (* Robert Price, Mar 30 2019 *)
PROG
(PARI) a(n)=sum(i=1, n, sum(j=1, i, if(abs(bigomega(i)-2) + abs(bigomega(j)-2) + abs(n-i-j), 0, 1)))
(PARI) a(n)=my(s); forprime(p=2, n\4, forprime(q=2, min(n\(2*p), p), if(bigomega(n-p*q)==2, s++))); s \\ Charles R Greathouse IV, Dec 07 2014
CROSSREFS
KEYWORD
AUTHOR
Benoit Cloitre, Aug 13 2002
STATUS
approved