[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A071211
Triangular array T(n,k) read by rows, giving number of labeled free trees such that the root is smaller than all its children, with respect to the number n of vertices and to the label k of the root.
0
1, 3, 1, 16, 8, 3, 125, 75, 40, 16, 1296, 864, 540, 300, 125, 16807, 12005, 8232, 5292, 3024, 1296, 262144, 196608, 143360, 100352, 65856, 38416, 16807, 4782969, 3720087, 2834352, 2099520, 1492992, 995328, 589824, 262144, 100000000
OFFSET
1,2
REFERENCES
C. Chauve, S. Dulucq and O. Guibert, Enumeration of some labeled trees, Proceedings of FPSAC/SFCA 2000 (Moscow), Springer, pp. 146-157.
FORMULA
T(n,k) = (n-k)*(n+1)^(n-k-1)*n^(k-1).
MAPLE
T:= (n, k)-> (n-k)*(n+1)^(n-k-1)*n^(k-1):
seq(seq(T(n, k), k=0..n-1), n=1..10);
PROG
(PARI) tabl(nn) = {for (n=1, nn, for (k=0, n-1, print1((n-k)*(n+1)^(n-k-1)*n^(k-1), ", "); ); print(); ); } \\ Michel Marcus, Jun 27 2013
CROSSREFS
Cf. A000312, A000272 (first column).
Sequence in context: A143018 A102012 A128249 * A222029 A038675 A264902
KEYWORD
easy,nonn,tabl
AUTHOR
Cedric Chauve (chauve(AT)lacim.uqam.ca), May 16 2002
STATUS
approved