[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A061720
First differences of sequence of primorials.
10
1, 4, 24, 180, 2100, 27720, 480480, 9189180, 213393180, 6246600360, 194090796900, 7220177644680, 296829525392400, 12778511068142820, 601807021256821380, 31974268694601553320, 1890171191677022594340, 115365621009252758344200, 7741033169720860084895820
OFFSET
0,2
COMMENTS
Largest number below primorial(n + 1) to be divisible by the first n primes. - Alonso del Arte, Dec 13 2014
FORMULA
a(n) = A002110(n+1) - A002110(n) = A002110(n)*A006093(n+1).
EXAMPLE
a(2) = primorial(3) - primorial(2) = 30 - 6 = 24.
a(3) = primorial(4) - primorial(3) = 210 - 30 = 180.
MAPLE
p:= proc(n) option remember; `if`(n=0, 1, ithprime(n)*p(n-1)) end:
a:= n-> p(n+1)-p(n):
seq(a(n), n=0..20); # Alois P. Heinz, Feb 23 2022
MATHEMATICA
Differences[FoldList[Times, 1, Prime[Range[20]]]] (* Alonso del Arte, Dec 13 2014 *)
PROG
(PARI) { n=-1; r=q=1; forprime (p=2, prime(101), r*=p; write("b061720.txt", n++, " ", r-q); q=r ) } \\ Harry J. Smith, Jul 27 2009
CROSSREFS
Subsequence of A276155.
Sequence in context: A309637 A168452 A361594 * A197472 A152403 A111556
KEYWORD
easy,nonn
AUTHOR
Labos Elemer, Jun 20 2001
EXTENSIONS
Since primorial(0) = 1, term a(0) = 1 added by Harry J. Smith, Jul 27 2009
STATUS
approved