[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A069093
Jordan function J_8(n).
7
1, 255, 6560, 65280, 390624, 1672800, 5764800, 16711680, 43040160, 99609120, 214358880, 428236800, 815730720, 1470024000, 2562493440, 4278190080, 6975757440, 10975240800, 16983563040, 25499934720, 37817088000
OFFSET
1,2
COMMENTS
a(n) is divisible by 480 = (2^5)*3*5 = A006863(4), except for n = 1, 2, 3 and 5. See Lugo. - Peter Bala, Jan 13 2024
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
FORMULA
a(n) = Sum_{d|n} d^8*mu(n/d).
Multiplicative with a(p^e) = p^(8e)-p^(8(e-1)).
Dirichlet generating function: zeta(s-8)/zeta(s). - Ralf Stephan, Jul 04 2013
a(n) = n^8*Product_{distinct primes p dividing n} (1-1/p^8). - Tom Edgar, Jan 09 2015
Sum_{k=1..n} a(k) ~ n^9 / (9*zeta(9)). - Vaclav Kotesovec, Feb 07 2019
From Amiram Eldar, Oct 12 2020: (Start)
Limit_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k^8 = 1/zeta(9).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^8/(p^8-1)^2) = 1.0040927606... (End)
MAPLE
with(numtheory): seq(add(d^8 * mobius(n/d), d in divisors(n)), n = 1..100); # Peter Bala, Jan 13 2024
MATHEMATICA
JordanJ[n_, k_] := DivisorSum[n, #^k*MoebiusMu[n/#] &]; f[n_] := JordanJ[n, 8]; Array[f, 25]
f[p_, e_] := p^(8*e) - p^(8*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
PROG
(PARI) for(n=1, 100, print1(sumdiv(n, d, d^8*moebius(n/d)), ", "))
CROSSREFS
Cf. A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A007434 (J_2), A059376 (J_3), A059377 (J_4), A059378 (J_5), A069091 - A069095 (J_6 through J_10)
Cf. A013667.
Sequence in context: A228223 A022524 A261032 * A024006 A258809 A321553
KEYWORD
easy,nonn,mult
AUTHOR
Benoit Cloitre, Apr 05 2002
STATUS
approved