[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Number of ways to tile a 4 X n room with 1x2 Tatami mats. At most 3 Tatami mats may meet at a point.
3

%I #10 Oct 17 2019 11:44:28

%S 1,4,4,2,3,3,3,5,5,6,8,8,11,13,14,19,21,25,32,35,44,53,60,76,88,104,

%T 129,148,180,217,252,309,365,432,526,617,741,891,1049,1267,1508,1790,

%U 2158,2557,3057,3666,4347,5215,6223,7404,8881,10570,12619,15104,17974

%N Number of ways to tile a 4 X n room with 1x2 Tatami mats. At most 3 Tatami mats may meet at a point.

%H R. J. Mathar, <a href="http://arxiv.org/abs/1311.6135">Paving rectangular regions with rectangular tiles,....</a>, arXiv:1311.6135 [math.CO], Table 3.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,1,0,1).

%F For n >= 9, a(n) = a(n-3) + a(n-5).

%F G.f.: x*(x+1)*(2*x^6+x^5+x^4-x^2-3*x-1)/(-1+x^5+x^3) [From Maksym Voznyy (voznyy(AT)mail.ru), Jul 28 2009]

%Y Cf. A068929 for incongruent tilings, A068920 for more info. First column of A272473.

%K easy,nonn

%O 1,2

%A _Dean Hickerson_, Mar 11 2002

%E G.f. proposed by Maksym Voznyy checked and corrected by _R. J. Mathar_, Sep 16 2009.