[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A068328
Arithmetic derivatives of the squarefree numbers.
7
0, 1, 1, 1, 5, 1, 7, 1, 1, 9, 8, 1, 1, 10, 13, 1, 15, 1, 31, 1, 14, 19, 12, 1, 21, 16, 1, 41, 1, 25, 1, 20, 1, 16, 22, 31, 1, 1, 33, 18, 61, 1, 26, 59, 1, 1, 39, 18, 71, 1, 43, 1, 22, 45, 32, 1, 20, 34, 49, 24, 1, 1, 91, 1, 71, 55, 1, 1, 87, 40, 1, 101, 28, 61, 24, 63, 44, 1, 46
OFFSET
1,5
COMMENTS
a(n) and A005117(n) are coprime, cf. A085731. - Reinhard Zumkeller, May 10 2011
LINKS
Victor Ufnarovski and Bo Ahlander, How to Differentiate a Number, J. Integer Seqs., Vol. 6 (2003), Article 03.3.4.
FORMULA
a(n) = A003415(A005117(n)).
a(n) = A069359(A005117(n)).
a(n) = Sum_{prime p | A005117(n)} A005117(n)/p.
EXAMPLE
a(65) = d(A005117(65)) = d(105) = d(3*35) = 3*d(35)+d(3)*35 = 3*d(5*7)+1*35 = 3*d(5*7)+1*35 = 3*(5*d(7)+d(5)*7)+35 = 3*(5*1+1*7)+35 = 3*12+35 = 71, where d(n) = A003415(n).
With d(1)=0, d(prime) = 1 and d(m*n) = d(m)*n + m*d(n).
MATHEMATICA
ad[n_] := ad[n] = n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); ad[1] = 0; Table[ad[k], {k, Select[Range[150], SquareFreeQ]}] (* Amiram Eldar, Mar 04 2024 *)
PROG
(Haskell)
a068328 = a003415 . a005117 -- Reinhard Zumkeller, May 10 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Feb 27 2002
STATUS
approved