[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065946
Bessel polynomial {y_n}''(-2).
1
0, 0, 6, -150, 3870, -110670, 3538500, -125941284, 4953759300, -213744815460, 10047637214010, -511403305348650, 28029852267603186, -1646397200571955650, 103190849406195456360, -6875135229835376875560, 485256294032090950981800
OFFSET
0,3
REFERENCES
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
FORMULA
From G. C. Greubel, Aug 14 2017: (Start)
a(n) = 4*n*(n - 1)*(1/2)_{n}*(-4)^(n - 2)*hypergeometric1f1[(2-n, -2*n, -1), where (a)_{n} is the Pochhammer symbol.
E.g.f.: (1/16)*(1 + 4*x)^(-5/2)*((24*x^2 + 20*x + 2)*sqrt(1 + 4*x) + (16*x^3 - 12*x^2 - 24*x - 2))*exp((sqrt(1 + 4*x) -1)/2). (End)
G.f.: (6*x^2/(1-x)^5)*hypergeometric2f0(3,5/2; - ; -4*x/(1-x)^2). - G. C. Greubel, Aug 16 2017
MATHEMATICA
Join[{0, 0}, Table[4*n*(n - 1)*Pochhammer[1/2, n]*(-4)^(n - 2)*
Hypergeometric1F1[2 - n, -2*n, -1], {n, 2, 50}]] (* G. C. Greubel, Aug 14 2017 *)
PROG
(PARI) for(n=0, 50, print1(sum(k=0, n-2, ((n+k+2)!/(4*k!*(n-k-2)!))*(-1)^k), ", ")) \\ G. C. Greubel, Aug 14 2017
CROSSREFS
Sequence in context: A070025 A291110 A246214 * A222051 A285747 A013296
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Dec 08 2001
STATUS
approved