[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A051638
a(n) = sum_{k=0..n} (C(n,k) mod 3).
8
1, 2, 4, 2, 4, 8, 4, 8, 13, 2, 4, 8, 4, 8, 16, 8, 16, 26, 4, 8, 13, 8, 16, 26, 13, 26, 40, 2, 4, 8, 4, 8, 16, 8, 16, 26, 4, 8, 16, 8, 16, 32, 16, 32, 52, 8, 16, 26, 16, 32, 52, 26, 52, 80, 4, 8, 13, 8, 16, 26, 13, 26, 40, 8, 16, 26, 16, 32, 52, 26, 52, 80, 13
OFFSET
0,2
COMMENTS
Row sums of the triangle in A083093. - Reinhard Zumkeller, Jul 11 2013
FORMULA
Write n in base 3; if the representation contains r 1's and s 2's then a(n) = 2^{r-1} * (3^(s+1) - 1) = 1/2 * (3*A006047(n) - 2^(A062756(n))). - Robin Chapman, Ahmed Fares (ahmedfares(AT)my-deja.com) and others, Jul 16 2001
MATHEMATICA
Table[2^(DigitCount[n, 3, 1]-1) (3^(DigitCount[n, 3, 2]+1)-1), {n, 0, 80}] (* Harvey P. Dale, Jun 20 2019 *)
PROG
(Haskell)
a051638 = sum . a083093_row -- Reinhard Zumkeller, Jul 11 2013
CROSSREFS
Cf. A001316.
Sequence in context: A318768 A166242 A143107 * A286580 A286598 A286557
KEYWORD
nonn
STATUS
approved