[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A051114
Number of monotone Boolean functions of n variables with 6 mincuts.
10
0, 0, 0, 0, 1, 1380, 759457, 192504214, 31169837405, 3827970163920, 392135190780649, 35468973527445018, 2937270598777421269, 228156280366446932500, 16904255174464832812001, 1208995011493806361868862, 84197134590686932418878093, 5746616155270206518199693720
OFFSET
0,6
REFERENCES
J. L. Arocha, Antichains in ordered sets, (in Spanish) An. Inst. Mat. UNAM, vol. 27, 1987, 1-21.
V. Jovovic and G. Kilibarda, On enumeration of the class of all monotone Boolean functions, Belgrade, 1999, in preparation.
LINKS
K. S. Brown, Dedekind's Problem
V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, J. Integer Seqs., Vol. 7, 2004.
FORMULA
a(n) = (1/6!)*(64^n-30 * 48^n+ 120 * 40^n+ 60 * 36^n+ 60 * 34^n-12 * 33^n-345 * 32^n-720 * 30^n+ 810 * 28^n+ 120 * 27^n+ 480 * 26^n+ 360 * 25^n-480 * 24^n-720 * 23^n-240 * 22^n-540 * 21^n+ 1380 * 20^n+ 750 * 19^n+ 60 * 18^n-210 * 17^n-1535 * 16^n-1820 * 15^n+ 2250 * 14^n+ 1800 * 13^n-2820 * 12^n+ 300 * 11^n+ 2040 * 10^n+ 340 * 9^n-1815 * 8^n+ 510 * 7^n-1350 * 6^n+ 1350 * 5^n+ 274 * 4^n-548 * 3^n+ 120 * 2^n).
KEYWORD
nonn,easy
AUTHOR
Vladeta Jovovic, Goran Kilibarda, and Zoran Maksimovic
EXTENSIONS
More terms from Colin Barker, Nov 26 2014
STATUS
approved