%I #21 Sep 10 2017 17:54:38
%S 4,9,24,66,182,501,1376,3771,10314,28158,76744,208839,567484,1539981,
%T 4173852,11299386,30556346,82547961,222790424,600753663,1618558734,
%U 4357256694,11721125644,31507528971,84637773172
%N Transform of A059502 applied to sequence 4,5,6,...
%C The fourth row of the array A059503.
%H G. C. Greubel, <a href="/A059507/b059507.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Bo#boustrophedon">Index entries for sequences related to boustrophedon transform</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (6,-11,6,-1).
%F From _Colin Barker_, Nov 30 2012: (Start)
%F a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4).
%F G.f.: x*(1-x)*(3*x^2-11*x+4)/(x^2-3*x+1)^2. (End)
%F a(n) = ((3 - n)*Fibonacci(2*n) + (15 + 3*n)*Fibonacci(2*n - 1))/5. - _G. C. Greubel_, Sep 10 2017
%t Rest[CoefficientList[Series[x*(1 - x)*(3*x^2 - 11*x + 4)/(x^2 - 3*x + 1)^2, {x, 0, 50}], x]] (* _G. C. Greubel_, Sep 10 2017 *)
%o (PARI) Vec(x*(1-x)*(3*x^2-11*x+4)/(x^2-3*x+1)^2 + O(x^40)) \\ _Michel Marcus_, Sep 09 2017
%Y Cf. A000667, A059216, A059219, A059502.
%K easy,nonn
%O 1,1
%A _Floor van Lamoen_, Jan 19 2001