OFFSET
2,2
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 171, #34.
FORMULA
G.f. A(x) is (R(x))^2 where R(x) is the series reversion of x*hypergeom([1,2],[],x) = sum(n>=1, n!*x^n), see Comtet. - Mark van Hoeij, Apr 20 2013
MAPLE
series(RootOf(T*hypergeom([1, 2], [], T)-x, T)^2, x=0, 21); # Mark van Hoeij, Apr 20 2013
MATHEMATICA
nmax = 23; t[n_, k_] := t[n, k] = Sum[(m+1)!*t[n-m-1, k-1], {m, 0, n-k}]; t[n_, 1] = n!; t[n_, n_] = 1; tnk = Table[t[n, k], {n, 1, nmax}, {k, 1, nmax}]; A059370 = Reverse /@ Inverse[tnk] // DeleteCases[#, 0, 2] & ; Table[A059370[[n, n - 1]], {n, 2, nmax}] (* Jean-François Alcover, Jun 14 2013 *)
PROG
(PARI)
N = 66; x = 'x + O('x^N);
tf = sum(n=1, N, n!*x^n );
gf=serreverse(%)^2;
v = Vec(gf)
/* Joerg Arndt, Apr 20 2013 */
CROSSREFS
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Jan 28 2001
EXTENSIONS
Added more terms, Mark van Hoeij and Joerg Arndt, Apr 20 2013
STATUS
approved