[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A059025
Triangle of Stirling numbers of order 6.
4
1, 1, 1, 1, 1, 1, 1, 462, 1, 1716, 1, 4719, 1, 11440, 1, 25883, 1, 56134, 1, 118456, 2858856, 1, 245480, 23279256, 1, 502588, 124710300, 1, 1020680, 551496660, 1, 2061709, 2181183147, 1, 4149752, 8021782197, 1, 8333153, 28051272535
OFFSET
6,8
COMMENTS
The number of partitions of the set N, |N|=n, into k blocks, all of cardinality greater than or equal to 6. This is the 6-associated Stirling number of the second kind.
This is entered as a triangular array. The entries S_6(n,k) are zero for 6k>n, so these values are omitted. Initial entry in sequence is S_6(6,1).
Rows are of lengths 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, ...
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 222.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 76.
LINKS
A. E. Fekete, Apropos two notes on notation, Amer. Math. Monthly, 101 (1994), 771-778.
FORMULA
S_r(n+1, k)=k S_r(n, k)+binomial(n, r-1)S_r(n-r+1, k-1) for this sequence, r=6.
G.f.: Sum_{n>=0, k>=0} S_r(n,k)*u^k*t^n/n! = exp(u(e^t - Sum_{i=0..r-1} t^i/i!)).
EXAMPLE
There are 462 ways of partitioning a set N of cardinality 12 into 2 blocks each of cardinality at least 6, so S_6(12,2)=462.
MATHEMATICA
S6[n_ /; 6 <= n <= 11, 1] = 1; S6[n_, k_] /; 1 <= k <= Floor[n/6] := S6[n, k] = k*S6[n-1, k] + Binomial[n-1, 5]*S6[n-6, k-1]; S6[_, _] = 0; Flatten[ Table[ S6[n, k], {n, 6, 24}, {k, 1, Floor[n/6]}]] (* Jean-François Alcover, Feb 21 2012 *)
CROSSREFS
KEYWORD
nonn,tabf,nice
AUTHOR
Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000
STATUS
approved