%I #32 Mar 28 2018 03:58:29
%S 0,1,4,9,16,25,36,49,64,81,10,22,36,52,70,90,112,136,162,190,40,63,88,
%T 115,144,175,208,243,280,319,90,124,160,198,238,280,324,370,418,468,
%U 160,205,252,301,352,405,460,517,576,637,250,306,364,424,486,550,616
%N a(n) = n times sum of digits of n.
%C A056992(n) = A010888(a(n)). - _Reinhard Zumkeller_, Mar 19 2014
%H Reinhard Zumkeller, <a href="/A057147/b057147.txt">Table of n, a(n) for n = 0..10000</a>
%H F. B. Diniz, <a href="http://arxiv.org/abs/1607.06082">About a new family of sequences</a>, arXiv:1607.06082 [math.GM], 2016.
%F a(n) = n*A007953(n). - _Michel Marcus_, Aug 10 2014
%F G.f.: x * (d/dx) (1/(1 - x))*Sum_{k>=1} (x^k - x^(10^k+k) - 9*x^(10^k))/(1 - x^(10^k)). - _Ilya Gutkovskiy_, Mar 27 2018
%p for n from 0 to 150 do printf(`%d,`,n*add(convert(n, base, 10)[i], i=1..nops(convert(n,base, 10)))) od:
%t Table[n*Total[IntegerDigits[n]], {n, 0, 100}]
%o (Haskell)
%o a057147 n = a007953 n * n -- _Reinhard Zumkeller_, Mar 19 2014
%o (PARI) a(n) = n*sumdigits(n) \\ _Franklin T. Adams-Watters_, Aug 03 2014
%o (Python)
%o [n*sum([int(d) for d in str(n)]) for n in range(10**5)] # _Chai Wah Wu_, Aug 05 2014
%Y Cf. A007953, A003634, A005349, A052489, A052490, A003635, A245788.
%Y Iterations: A047892 (start=2), A047912 (start=3), A047897 (start=5), A047898 (start=6), A047899 (start=7), A047900 (start=8), A047901 (start=9), A047902 (start=11).
%K nonn,base,easy,look
%O 0,3
%A _N. J. A. Sloane_, Sep 13 2000
%E More terms from _James A. Sellers_ and Larry Reeves (larryr(AT)acm.org), Sep 13 2000