[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A054490
Expansion of (1+5*x)/(1-6*x+x^2).
16
1, 11, 65, 379, 2209, 12875, 75041, 437371, 2549185, 14857739, 86597249, 504725755, 2941757281, 17145817931, 99933150305, 582453083899, 3394785353089, 19786259034635, 115322768854721, 672150354093691, 3917579355707425, 22833325780150859
OFFSET
0,2
COMMENTS
A Pellian-related second-order recursive sequence.
Third binomial transform of 1,8,8,64,64,512. - Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009
Binomial transform of A164607. - R. J. Mathar, Oct 26 2011
Pisano period lengths: 1, 1, 4, 2, 6, 4, 3, 2, 12, 6, 12, 4, 14, 3, 12, 2, 8, 12, 20, 6, ... - R. J. Mathar, Aug 10 2012
From Wolfdieter Lang, Feb 26 2015: (Start)
This sequence gives all positive solutions x = x1 = a(n) of the first class of the (generalized) Pell equation x^2 - 2*y^2 = -7. For the corresponding y1 terms see 2*A038723(n). All positive solutions of the second class are given by (x2(n), y2(n)) = (A255236(n), A038725(n+1)), n >= 0. See (A254938(1), 2*A255232(1)) for the fundamental solution (1, 2) of the first class. See the Nagell reference, Theorem 111, p. 210, Theorem 110, p. 208, Theorem 108a, pp. 206-207.
This sequence also gives all positive solutions y = y1 of the first class of the Pell equation x^2 - 2*y^2 = 14. The corresponding solutions x1 are given in 4*A038723. This follows from the preceding comment. (End)
From Wolfdieter Lang, Mar 19 2015: (Start)
a(0) = -(2*A038761(0) - A038762(0)), a(n) = 2*A253811(n-1) + A101386(n-1), for n >= 1.
This follows from the general trivial fact that if X^2 - D*Y^2 = N (X, Y positive integers, D > 1, not a square, and N a non-vanishing integer) then x:= D*Y +/- X and y:= Y +/- X (correlated signs) satisfy x^2 - D*y^2 = -(D-1)*N. with integers x and y. Here D = 2 and N = 7. (End)
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N. Y., 1964, pp. 122-125, 194-196.
T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964.
LINKS
I. Adler, Three Diophantine equations - Part II, Fib. Quart., 7 (1969), pp. 181-193.
Seyed Hassan Alavi, Ashraf Daneshkhah, Cheryl E Praeger, Symmetries of biplanes, arXiv:2004.04535 [math.GR], 2020. See y(n) in Lemma 7.9 p. 21.
E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242.
Tanya Khovanova, Recursive Sequences
FORMULA
a(n) = 6*a(n-1) - a(n-2) for n>1, a(0)=1, a(1)=11.
a(n) = sqrt(8*A038723(n)^2 - 7).
a(n) = (11*((3+2*sqrt(2))^n - (3-2*sqrt(2))^n) - ((3+2*sqrt(2))^(n-1) - (3-2*sqrt(2))^(n-1)))/(4*sqrt(2)).
a(n) = 11*S(n, 6) + 5*S(n-1, 6), n >= 0, with Chebyshev's polynomials S(n, x) (A049310) evaluated at x=6: S(n, 6) = A001109(n-1). See the g.f. and the Pell equation comments above. - Wolfdieter Lang, Feb 26 2015
a(n) = 2*A253811(n-1) + A101386(n-1), for n >= 1. See the Mar 19 2015 comment above. - Wolfdieter Lang, Mar 19 2015
From G. C. Greubel, Jan 20 2020: (Start)
a(n) = Pell(2*n+1) + 3*Pell(2*n).
a(n) = ChebyshevU(n,3) + 5*ChebyshevU(n-1,3).
E.g.f.: exp(3*x)*( cosh(2*sqrt(2)*x) + 2*sqrt(2)*sinh(2*sqrt(2)*x) ). (End)
EXAMPLE
n = 2: sqrt(8*23^2-7) = 65.
2*19 + 27 = 65. - Wolfdieter Lang, Mar 19 2015
MAPLE
a[0]:=1: a[1]:=11: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n], n=0..30); # Zerinvary Lajos, Jul 26 2006
MATHEMATICA
CoefficientList[Series[(1+5x)/(1-6x+x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Mar 20 2015 *)
LinearRecurrence[{6, -1}, {1, 11}, 30] (* G. C. Greubel, Jul 26 2018 *)
PROG
(Magma) I:=[1, 11]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 20 2015
(PARI) my(x='x+O('x^30)); Vec((1+5*x)/(1-6*x+x^2)) \\ G. C. Greubel, Jul 26 2018
(Sage) [lucas_number1(2*n+1, 2, -1) + 3*lucas_number1(2*n, 2, -1) for n in (0..30)] # G. C. Greubel, Jan 20 2020
(GAP) a:=[1, 11];; for n in [3..30] do a[n]:=6*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 20 2020
KEYWORD
nonn,easy
AUTHOR
Barry E. Williams, May 04 2000
EXTENSIONS
More terms from James A. Sellers, May 05 2000
More terms from Vincenzo Librandi, Mar 20 2015
STATUS
approved