[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048163
a(n) = Sum_{k=1..n} ((k-1)!)^2*Stirling2(n,k)^2.
15
1, 2, 14, 230, 6902, 329462, 22934774, 2193664790, 276054834902, 44222780245622, 8787513806478134, 2121181056663291350, 611373265185174628502, 207391326125004608457782, 81791647413265571604175094, 37109390748309009878392597910, 19192672725746588045912535407702
OFFSET
1,2
COMMENTS
a(n) is also the number of max-closed relations on an ordered n-element domain (see the paper by Jeavons and Cooper, 1995). - Don Knuth, Feb 12 2024
REFERENCES
Lovasz, L. and Vesztergombi, K.; Restricted permutations and Stirling numbers. Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, pp. 731-738, Colloq. Math. Soc. Janos Bolyai, 18, North-Holland, Amsterdam-New York, 1978.
K. Vesztergombi, Permutations with restriction of middle strength, Stud. Sci. Math. Hungar., 9 (1974), 181-185.
LINKS
Peter G. Jeavons and Martin C. Cooper, Tractable constraints on ordered domains, Artificial Intelligence 79 (1995), 327-339.
Hyeong-Kwan Ju and Seunghyun Seo, Enumeration of (0,1)-matrices avoiding some 2 X 2 matrices, Discrete Math., 312 (2012), 2473-2481.
Ken Kamano, Lonesum decomposable matrices, arXiv:1701.07157 [math.CO], 2017.
H.-K. Kim et al., Poly-Bernoulli numbers and lonesum matrices, arXiv:1103.4884 [math.CO], 2011.
FORMULA
E.g.f. (with offset 0): Sum((1-exp(-(m+1)*z))^m, m=0..oo)
O.g.f.: Sum_{n>=1} n^(n-1) * (n-1)! * x^n / Product_{k=1..n-1} (1 - n*k*x). - Paul D. Hanna, Jan 05 2013
Limit n->infinity (a(n)/n!)^(1/n)/n = 1/(exp(1)*(log(2))^2) = 0.7656928576... . - Vaclav Kotesovec, Jun 21 2013
a(n) ~ 2*sqrt(Pi) * n^(2*n-3/2) / (sqrt(1-log(2)) * exp(2*n) * (log(2))^(2*n-1)). - Vaclav Kotesovec, May 13 2014
a(n+1) = Sum_{k = 0..n} A163626(n,k)^2. - Philippe Deléham, May 30 2015
a(n) = A306209(2n-2,n-1). - Alois P. Heinz, Feb 01 2019
a(n) = A266695(2n-2). - Alois P. Heinz, Apr 17 2024
EXAMPLE
1
1 + 1 = 2
1 + 9 + 4 = 14
1 + 49 + 144 + 36 = 230
1 + 225 + 2500 + 3600 + 576 = 6902
... - Philippe Deléham, May 30 2015
MATHEMATICA
Table[Sum[((k-1)!)^2*StirlingS2[n, k]^2, {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Jun 21 2013 *)
PROG
(PARI) a(n)=if(n<1, 0, polcoeff(sum(m=1, n, m^(m-1)*(m-1)!*x^m/prod(k=1, m-1, 1+m*k*x+x*O(x^n))), n)) \\ Paul D. Hanna, Jan 05 2013
for(n=1, 20, print1(a(n), ", "))
(PARI) Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)
a(n)=sum(k=1, n, (-1)^(n-k)*k^(n-1)*(k-1)!*Stirling2(n-1, k-1))
for(n=1, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 06 2013
(PARI) a(n) = sum(k=1, n, (k-1)!^2*stirling(n, k, 2)^2); \\ Michel Marcus, Jun 22 2018
CROSSREFS
Main diagonal of array A099594.
Sequence in context: A338187 A323693 A118086 * A093548 A052215 A053846
KEYWORD
nonn
EXTENSIONS
Entry revised by N. J. A. Sloane, Jul 05 2012
STATUS
approved