[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A046079
Number of Pythagorean triangles with leg n.
30
0, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 1, 1, 4, 3, 1, 2, 1, 4, 4, 1, 1, 7, 2, 1, 3, 4, 1, 4, 1, 4, 4, 1, 4, 7, 1, 1, 4, 7, 1, 4, 1, 4, 7, 1, 1, 10, 2, 2, 4, 4, 1, 3, 4, 7, 4, 1, 1, 13, 1, 1, 7, 5, 4, 4, 1, 4, 4, 4, 1, 12, 1, 1, 7, 4, 4, 4, 1, 10, 4, 1, 1, 13, 4, 1, 4, 7, 1, 7, 4, 4, 4, 1, 4, 13, 1, 2, 7
OFFSET
1,8
COMMENTS
Number of ways in which n can be the leg (other than the hypotenuse) of a primitive or nonprimitive right triangle.
Number of ways that 2/n can be written as a sum of exactly two distinct unit fractions. For every solution to 2/n = 1/x + 1/y, x < y, the Pythagorean triple is (n, y-x, x+y-n). - T. D. Noe, Sep 11 2002
For n>2, the positions of the ones in this sequence correspond to the prime numbers and their doubles, A001751. - Ant King, Jan 29 2011
Let L = length of longest leg, H = hypotenuse. For odd n: L =(n^2-1)/2 and H = L+1. For even n, L = (n^2-4)/4 and H = L+2. - Richard R. Forberg, May 31 2013
Or number of ways n^2 can be written as the difference of two positive squares: a(3) = 1: 3^2 = 5^2-4^2; a(8) = 2: 8^2 = 10^2-6^2 = 17^2-15^2; a(16) = 3: 16^2 = 20^2-12^2 = 34^2-30^2 = 65^2-63^2. - Alois P. Heinz, Aug 06 2019
Number of ways to write 2n as the sum of two positive integers r and s such that r < s and (s - r) | (s * r). - Wesley Ivan Hurt, Apr 21 2020
REFERENCES
Albert H. Beiler, Recreations in the Theory of Numbers. New York: Dover Publications, 1966, pp. 116-117.
LINKS
Fred Richman, Pythagorean Triples. [Wayback Machine link]
Amitabha Tripathi, On Pythagorean triples containing a fixed integer, Fib. Q., 46/47 (2008/2009), 331-340. See Theorem 6.
Eric Weisstein's World of Mathematics, Pythagorean Triple.
FORMULA
For odd n, a(n) = A018892(n) - 1.
Let n = (2^a0)*(p1^a1)*...*(pk^ak). Then a(n) = [(2*a0 - 1)*(2*a1 + 1)*(2*a2 + 1)*(2*a3 + 1)*...*(2*ak + 1) - 1]/2. Note that if there is no a0 term, i.e., if n is odd, then the first term is simply omitted. - Temple Keller (temple.keller(AT)gmail.com), Jan 05 2008
For odd n, a(n) = (tau(n^2) - 1) / 2; for even n, a(n) = (tau((n / 2)^2) - 1) / 2. - Amber Hu (hupo001(AT)gmail.com), Jan 23 2008
a(n) = Sum_{i=1..n-1} (1 - ceiling(i*(2*n-i)/(2*n-2*i)) + floor(i*(2*n-i)/(2*n-2*i))). - Wesley Ivan Hurt, Apr 21 2020
Sum_{k=1..n} a(k) ~ (n / Pi^2) * (log(n)^2 + c_1 * log(n) + c_2), where c_1 = 2 * (gamma - 1) + 48*log(A) - 4*log(Pi) - 13*log(2)/3 = 3.512088... (gamma = A001620, log(A) = A225746), and c_2 = 6 * gamma^2 - (6 + log(2)) * gamma + 2 - Pi^2/2 + 19*log(2)^2/18 + log(2)/3 - 6*gamma_1 + 8 * (zeta'(2)/zeta(2))^2 + (4 - 12*gamma + 2*log(2)/3) * zeta'(2)/zeta(2) - 4*zeta''(2)/zeta(2) = -4.457877... (gamma_1 = -A082633). - Amiram Eldar, Nov 08 2024
MATHEMATICA
a[n_] := (DivisorSigma[0, If[OddQ[n], n, n / 2]^2] - 1) / 2; Table[a[i], {i, 100}] (* Amber Hu (hupo001(AT)gmail.com), Jan 23 2008 *)
a[ n_] := Length @ FindInstance[ n > 0 && y > 0 && z > 0 && n^2 + y^2 == z^2, {y, z}, Integers, 10^9]; (* Michael Somos, Jul 25 2018 *)
PROG
(Sage) def A046079(n) : return (number_of_divisors(n^2 if n%2==1 else n^2/4) - 1) // 2 # Eric M. Schmidt, Jan 26 2013
(PARI) A046079(n) = ((numdiv(if(n%2, n, n/2)^2)-1)/2); \\ Antti Karttunen, Sep 27 2018
(Python)
from math import prod
from sympy import factorint
def A046079(n): return prod((e+(p&1)<<1)-1 for p, e in factorint(n).items())>>1 # Chai Wah Wu, Sep 06 2022
KEYWORD
nonn,easy
STATUS
approved