[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A032296
Number of aperiodic bracelets (turnover necklaces) with n beads of 5 colors.
1
5, 10, 30, 105, 372, 1460, 5890, 25275, 110050, 492744, 2227270, 10195070, 46989180, 218096780, 1017447736, 4768944375, 22440372240, 105966686200, 501938733550, 2384200190580, 11353290083380
OFFSET
1,1
FORMULA
MOEBIUS transform of A032276.
From Herbert Kociemba, Nov 28 2016: (Start)
More generally, gf(k) is the g.f. for the number of bracelets with primitive period n and beads of k colors.
gf(k): Sum_{n>=1} mu(n)*( -log(1-k*x^n)/n + Sum_{i=0..2} binomial(k,i)x^(n*i)/(1-k*x^(2*n)) )/2. (End)
MATHEMATICA
mx=40; gf[x_, k_]:=Sum[ MoebiusMu[n]*(-Log[1-k*x^n]/n+Sum[Binomial[k, i]x^(n i), {i, 0, 2}]/( 1-k x^(2n)))/2, {n, mx}]; CoefficientList[Series[gf[x, 5], {x, 0, mx}], x] (* Herbert Kociemba, Nov 28 2016 *)
CROSSREFS
Column 5 of A276550.
Sequence in context: A373568 A189315 A056422 * A052648 A020995 A174467
KEYWORD
nonn
STATUS
approved