[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036366
Number of asymmetric n-ominoes in n-2 space.
2
0, 1, 4, 13, 42, 113, 309, 792, 2049, 5167, 13071, 32724, 82006, 204619, 510655, 1272101, 3168971, 7888446, 19636642, 48868367, 121621466, 302673515, 753319709, 1875049668, 4667676111, 11620911254, 28936281066, 72062264255
OFFSET
3,3
LINKS
W. F. Lunnon, Counting Multidimensional Polyominoes, Computer Journal, Vol. 18 (1975), pp. 366-67.
FORMULA
G.f.: A^3(x)/2 - A(x)A(x^2)/2 + 5A^4(x)/8 - A^2(x)A(x^2)/4 - 5A^2(x^2)/8 + A(x^4)/4 + A^5(x)/(1-A(x)) - (A(x)+A(x^2))*A^2(x^2)/(1-A(x^2)), where A(x) is the generating function for rooted identity trees with n nodes (that is, the g.f. of sequence A004111).
EXAMPLE
0 asymmetric trominoes in 1-space;
1 asymmetric tetromino in 2-space;
4 asymmetric pentominoes in 3-space.
MATHEMATICA
sa[ n_, k_ ] := sa[ n, k ]=a[ n+1-k, 1 ]+If[ n<2k, 0, -sa[ n-k, k ] ]; a[ 1, 1 ] := 1;
a[ n_, 1 ] := a[ n, 1 ]=Sum[ a[ i, 1 ]sa[ n-1, i ]i, {i, 1, n-1} ]/(n-1);
a[ n_, k_ ] := a[ n, k ]=Sum[ a[ i, 1 ]a[ n-i, k-1 ], {i, 1, n-1} ];
Table[ a[ i, 3 ]/2+5a[ i, 4 ]/8+Sum[ a[ i, j ], {j, 5, i} ]-If[ OddQ[ i ], 0, 5a[ i/2, 2 ]/8
-If[ OddQ[ i/2 ], 0, a[ i/4, 1 ]/4 ]+Sum[ a[ i/2, j ], {j, 3, i/2} ] ]
-Sum[ a[ j, 1 ](a[ i-2j, 1 ]/2+a[ i-2j, 2 ]/4)+Sum[ If[ OddQ[ k ], a[ j,
(k-1)/2 ]a[ i-2j, 1 ], 0 ], {k, 5, i} ], {j, 1, (i-1)/2} ], {i, 3, 30} ]
CROSSREFS
KEYWORD
easy,nice,nonn
STATUS
approved