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Introduction

In a series of four papers which appeared during the period 1906-1914, Axel
Thue considered several combinatorial problems which arise in the study of
sequences of symbols. Two of these papers [47, 49] deal with word problems
for finitely presented semigroups (these papers contain the definition of what is
now called a “Thue system”). He was able to solve the word problem in special
cases. It was only in 1947 that the general case was shown to be unsolvable
independently by E. L. Post [31] and A. A. Markov [27].

The other two papers [46, 48] deal with repetitions in finite and infinite words.
Perhaps because these papers were published in a journal with restricted avail-
ability (this is guessed by G. A. Hedlund [21]), this work of Thue was widely
ignored during a long time, and consequently some of his results have been
rediscovered again and again. Axel Thue’s papers on sequences are now more
easily accessible since they are included in the “Selected Papers” [50] which were
edited in 1977.

It is the purpose of the present text to give a translation of Axel Thue’s papers
on repetitions in sequences, both in more recent terminology and in relation
with new results and directions of research.

It appears that there is a noticeable difference, both in style and in amount
of results, between the 1906 paper (22 pages) and the 1912 paper (67 pages).
The first of these papers mainly contains the construction of an infinite square-
free word over three letters. Thue gives also an infinite square-free word over
four letters obtained by what is now called an iterated morphism, whilst the
three letter word is constructed in a slightly more complicated way (a uniform
tag-system, in the terminology of Cobham [13]).

The second paper attacks the more general problem of what Thue calls irre-
ducible words. He devotes special attention to the case of two and three letters.
In particular, he introduces what is now called the Thue-Morse sequence, and
shows that all twosided infinite overlap-free words are derived from this se-
quence. There are several aspects he did not consider: first, many combinatorial
properties of the Thue-Morse sequence (such as the number of factors, the recur-
rence index, and so on) were only investigated by M. Morse [28] or later; next,
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the characterization of all onesided infinite overlap-free words — which is much
more difficult than that of twosided words — was only given later by Fife [16].
However, Thue gives a complete description of circular overlap-free words.

Axel Thue’s investigation of square-free words over three letters is even more
detailed. He gives, in this paper, another construction of an infinite square-free
word, by iterated morphism, and then initiates, in a 30 pages development, a
tentative to describe all square-free words over three letters. He observes that
every infinite square-free word is an infinite product of words chosen in a set
of six words, and classifies those infinite square-free words that are products of
four among these six words. His classification, he observes, is similar both in
statement and in proof technique to what is found in diophantine equations: the
solutions are parametrized by some variables which are easier to manage.

This text is organized as follows: in the first chapter, we give some preliminary
definitions and notation. We introduce the notions of square-free, overlap-free
words, avoidable pattern, morphisms and codes. These are useful to present
Thue’s results in a somewhat more concise manner. As an example, we give
some combinatorial properties of the Thue-Morse sequence.

The two following chapters contain a translation of Thue’s papers. We have
tried to formulate Thue’s results as faithfully as possible. For the proofs, some
easy parts have been simplified, and more frequently some difficult steps have
been developed. In these chapters, footnotes only concern technical details. A
longer chapter of notes contains more general remarks and developments both
about the contents of Thue’s papers and about the actual state of the art.



Chapter 1

Preliminaries

In this preliminary chapter, we first introduce some definitions and notation and
then present the so-called Thue-Morse sequence and some of its properties.

1.1 Notation

An alphabet is a finite set (of symbols or letters). A word over some alphabet
A is a (finite) sequence of elements in A. The length of a word w is denoted
by |w|. The empty word of length 0 is denoted by ¢. We denote by alph(w)
the set of letters that occur at least once in the word w. An infinite word is a
mapping from N into A, and a twosided infinite word is a mapping from Z into
A. A circular word or necklace is the equivalence class of a finite word under
conjugacy (or circular permutation). We shall write v ~ w if v and w define
the same circular word. Sometimes, we identify a circular word with one of its
representatives.

A factor of a word w is any word u that occurs in w, i. e. such that there exist
words z, y with w = zuy. A square is a nonempty word of the form uwu. A word
is square-free if none of its factors is a square. Similarly, an overlap is a word
of the form zuzuz, where z is nonempty. The terminology is justified by the
fact that zua has two occurrences in zuzuz, one as a prefiz (initial factor) one
as a suffiz (final factor) and that these occurrences have a common part (the
central z). As before, a word is overlap-free if none of its factors is an overlap.
The reversal of a word v = aq ---a,, where aq,...,a, are letters, is the word
U= ay,---a1. If w=1, then uis a palindrome. The reversal of an infinite word
to the right is an infinite word to the left.

The set of words over A is the free monoid generated by A and is denoted by A*.
The set of nonempty words over A is denoted by AT. It is the free semigroup
generated by A. A function h : A* — B* is a morphism if h(uv) = h(u)h(v) for
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all words w, v. If |h(w)| > |w| for all words w, then h is nonerasing or length
increasing. It is equivalent to say that h(w) # ¢ for w # . If there is a letter a
such that h(a) starts with the letter a, then h"(a) starts with the word h"~1(a)
for all n > 0. If the set of words {h™(a) | n > 0} is infinite, the morphism defines
a unique infinite word say x by the requirement that all h"(a) are prefixes
of x. The word x is said to be obtained by iterating h on a and is called a
morphic word. Sometimes, x is also denoted by h“(a). Clearly, x is a fixed
point of h. The Thue-Morse sequence of section 1.4 is an example of a morphic
word. A morphism h : A* — B* easily extends to onesided infinite words. If
X = agdy - - - Ay - -+ is an infinite word, then h(x) = h(ag)h(ay)---h(a,)---. The
resulting word is infinite iff the set of indices n such that h(a,) # ¢ is infinite.
This holds in particular if & is nonerasing. The extension to twosided infinite
words is similar. The only ambiguity is in the convention adopted to fix the
origin of the image. We agree that any origin is convenient. In other words, we
consider, insofar as homomorphic images are concerned, the equivalence class
under the shift operator T that is defined by T'(x)(n) = x(n+ 1). If u is a finite
word, then the infinite periodic word v = uuu - - - verifies v = T1*(u®).

1.2 Codes and encodings

A code over A is a set X of nonempty words such that each word over A admits
at most one factorization as a product of words in X. In other words, for all
n,m Z 17 Tlyee s Ty Ylye e Ym € X7

T1- T =Y Ym, = n=mandz; =y (1<i<n).

It is equivalent to say that the submonoid X* generated by X is free and that
X is its base.

A set X is prefiz if no word in X is a prefix of any other word in X; thus
x,zu € X implies v = €. Suffix sets are defined symmetrically. Prefix and suffix
sets are codes. A biprefiz code is a code that is both prefix and suffix.

An encoding is a morphism h : A* — B* that is injective. If h is an encoding,
then the set X = h(A) is a code. Conversely, if X is a code over an alphabet B,
then an encoding of X is obtained by taking a bijection h from an alphabet A
onto X . This extends to an injective morphism from A* into B*. It is convenient
to implicitly transfer terminology between codes and encodings. Thus, we may
speak about prefix encodings, or about composition of codes.

Several special properties of codes are useful, and will be introduced when they
are needed.
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1.3 The Thue-Morse sequence

In this section, we recall some basic properties concerning the Thue-Morse se-
quence. Other properties and proofs can be found in Lothaire [25] and Salo-
maa [37], and of course in Thue’s second paper.

Let A = {a,b} be a two letter alphabet. Consider the morphism g from the free
monoid A* into itself defined by

p(a) = ab, wu(b) = ba .

Setting, for n > 0,
u, = p"(a), vy, = p(b)

one gets
Ug = a vg =0
up = ab vy = ba
ug = abba v9 = baab

u3 = abbabaab v3 = baababba

and more generally
Up+1 = UpVp, Vp4+1 = UnlUp
and

Up, = Vp, VU = Up

where W is obtained from w by exchanging « and b. Words u, and v, are
frequently called Morse blocks. It is easily seen that us, and vg, are palindromes,
and that ug,11 = v, ., where w™ is the reversal of w. The morphism p can be
extended to infinite words; it has two fixed points

t = abbabaabbaababbabaab - - - = p(t)

t = baababbaabbabaababba - - - = p(t)

and u, (resp. v,) is the prefix of length 2™ of t (resp. of t). It is equivalent to
say that t is the limit of the sequence (uy),>o (for the usual topology on finite
and infinite words), obtained by iterating the morphism pu.

The Thue-Morse sequence is the word t. There are several other characteriza-
tions of this word. Let ¢, be the n-th symbol in t, starting with n = 0. Then it
is easily shown by induction that

f = {a if di(n)

0 (mod 2)
b ifdi(n)=1

(mod 2)

where dy(n) is the number of bits equal to 1 in the binary expansion bin(n) of
n. For instance, bin(19) = 10011, consequently d1(19) = 3, and indeed t19 = a.
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As a consequence, there is a finite automaton computing the values ¢, as a
function of bin(n). This automaton has two states 0 and 1. It reads the string
bin(n) from left to right, starting in state 0. At the end, the state reached is 0 or
1 according to t, = b or ¢, = a. In fact, the automaton computes d;(n) modulo
2. For a general discussion along these lines, see Cobham [13] and Allouche [2].
Another description is given by Christol, Kamae, Mendes France, Rauzy in [12].
There are many generalizations of the Thue-Morse sequence, motivated by its
simplicity, and by its numerous properties. One quite general definition was in
fact already given by Prouhet in 1851 ! (see [32, 1].)

As we shall see, the Thue-Morse sequence is overlap-free. What Thue actually
showed, is that a word w over the two letter alphabet A = {a,b} is overlap-free
iff u(w) is overlap-free.

1.4 Symbolic dynamical systems

Although the notion of (symbolic) dynamical system is not essential for under-
standing the papers of Thue, it gives some insight into what Thue perhaps had
in mind when he tried to “parametrize” the square-free words.

A symbolic dynamical system or subshift is a set X of infinite words over some
alphabet A that is closed for the shift operator, defined by T'(x)(n) = x(n + 1),
and that is closed for the usual topology on infinite words. The language of X
is the set L(X) (or Fact(X)) of finite words that are factors of some element
in X. It is not difficult to show that x is in X iff L(x) C L(X). A dynamical
system X is minimal if it does not contain strictly any other dynamical system.
This means that X is equal to the dynamical system generated by any of its
elements, and also that L(x) = L(X) for any x € X. It has been shown that
a dynamical system is minimal iff each of its elements is uniformly recurrent in
the following sense. A word x is uniformly recurrent if there exists a function
£ : N — Nsuch that for all v, w € L(x), if |w| > x(|u|), then u is a factor of w.
Other people say that factors appear with “bounded gaps”. M. Morse [28] says
simply recurrent. The property that the dynamical system generated by the
(twosided ) Thue-Morse sequence is minimal was explicitly proved by Gottschalk
and Hedlund [17]. Axel Thue only mentions that every factor appears infinitely
often.



Chapter 2

Thue’s First Paper : About infinite
sequences of symbols

Let u be a word over some alphabet A, and let w be a word over some alphabet
B. We consider the question whether, given u and w, there always exists a
nonerasing morphism h : A* — B* such that h(u) is a factor of w. We shall
prove that this does not hold, as a consequence of a theorem which answers the
question for a large class of problems.

In the sequel, we call irreducible’ a word without two adjacent equal factors.

51

THEOREM 1.1. (Satz 1) There exist arbitrarily long square-free words over four
letters.

In order to prove this result, we show that, given any square-free word of length
k over four letters, one can always build a longer square-free word over the same
alphabet.

Let p be any word over three letters — for instance a, b and ¢ — of length at
least 4, and such that p? contains no other square than itself. By inserting a
new letter, say d, between two letters in p at four different places, we obtain
four words z, y, z, t which all contain a single d, and which reduce to p when
this letter is erased.

As an example, starting with
p = abacbe

!we shall write square-free.
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we can set for instance

x = adbacbe y = abdacbe
z = abadcbe  t = abacdbe

and define a morphism
h:{a,b,e,d}* — {a,b,c,d}”
by
ha)=z, hb)=y, hlc)==z h(d)=t.

We shall prove that h is a square-free morphism, i.e. that h(u) is a square-free
word whenever u is square-free. In order to do this, we need two lemmas.

LemMA 1.2. A word that contains an overlap also contains a square.

Proof?. Let w be a word that has two overlapping occurrences of some nonempty
word u. Then
w = zuy = v uy’

for some words z,2’,y,y’. We may assume that z is shorter than ', and since
the occurrences overlap, one has |z| < |2/| < |zu| < |@’u|. Thus, setting zs = 2’
and 2'q = xu, one gets xu = 2'q = wsq, whence u = sq, and

! ! !
w=z'uy = xssqy

showing that w contains a square, namely ss. "

LeMMA 1.3. Let p be a word such that p? contains no other square than itself.
For all n > 2, if p" contains a square u®, then |u| = 0 mod |p|.?

Proof. Let u® be a factor of p”. We first show that there exist prefixes z and z’
of p, and words y,y" and an integer k such that

pk = 2uy = 2'uy’

I. If zu is shorter than a’, this means that the first
2 is a factor of p?. Thus, the two

Indeed, assume |z| < |z
occurrence of u is a factor of p. But then u
occurrences of u in p* overlap.

Thus, setting as = ', the (proof of the) preceding lemma shows that s* is a
factor of p?. Thus s = p. "

Observe that the preceding lemma also holds for any two distinct occurrences
of u in a power of p, provided that 2|u| > |p|.

2For the relationship between overlaps and squares, see the introductory chapter.
Jand consequently, u is a conjugate of a power of p.
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We now come back to the theorem. Let u be a square-free word., Set w = h(u),
where h is the morphism defined above, and assume, arguing by contradiction,
that w contains a square, say v2. Then

w = h(u) = av?p

for some words a, 3. Let v’ be obtained from v by erasing all occurrences of the
letter d.

First, v contains at least one occurrence of the letter d. Indeed, otherwise v = v’,
and v? is a factor of w, and consequently v is a proper factor of p?, contrary
to the assumption on p. Next, by the preceding lemma, v’ is the conjugate of
some power of p, i. e.

o' = pap'pr, €20, p=pips
thus v contains exactly 1 + £ occurrences of the letter d. We set
V=871 TS = 5’7‘1 .. -7‘25’

where rq,...,rg, 7], ..., 7),5s" are all in the set X = {z,y, 2,t}. If s # s, then it
is easily seen that p? contains a proper square. Thus s = &', r; = rifor 1 <4 < (,
and 5 = §. Since 3¢’ contains one d, either s (and s’) or 5 (and §') contains
the letter d. But a suffix or a prefix of a word in X containing the letter d
determines the word in X. This means that u contains a square. "

We observe that the argument also holds for p of length 4. Thus, we may as
well consider
p = abcb
and
x = adbehb  y = abdcb
z = abedb  t = abebd .

The previous theorem can be generalized to the following statement:

Facr. Let X be a code of four nonempty words over a 4-letter alphabet
satisfying

(1) ifz € X and uwv € X*, then u,v € X*4;

(2) ifa,y,z€ X, and x # y # z, then zyz is square-free;

(3) ifaB,avy,68€ X, thena =68 or =75
and define a morphism h by assigning the four words in X to the four letters in
the alphabet. Then h(u) is square-free if u is square-free. (See Notes 4.1.)

The proofis by contradiction: let u be a word, and assume h(u) contains a square
ss. By (2), ss is not a factor of a product of three words in X. Consequently,

*This is the definition of a comma-free code; see the next chapter.
® As we shall see, this condition is superfluous.
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ss contains a product zy, with z,y € X. Thus one of the occurrences of s (and
by (1) also the other one), contains an occurrence of a word of X. This implies,
again by (1), that

88 = fxy - xpafxy T

with afg € X. It follows that u contains a factor avbve, with
h(a) = pB, h(b) = afB, h(c) = ap’, h(v) = a1+ a,

for some p, p’, whence
h(abe) = pBafay’
6

and by (2), a = b or b = ¢. But then u contains a square. "

THEOREM 1.4. (Satz 2) There exists an infinite square-free word over four let-
ters. More precisely, there exists a sequence (wy,),>o of square-free words such
that w,, is a prefix of wy41.

Indeed, it suffices to choose the morphism h such that h(a), say, starts with
the letter a. Then, there is an infinite word x that is a fixpoint of &, i.e. such
that x = h(x). As an example, if we use the second set of words, we obtain the
following infinite square-free word:

(adbeb)(abebd)(abdeb)(abedb)(abdeb)(adbeb)(abdeb) - - -

In a very similar way, one may construct twosided infinite square-free words, or
circular square-free words of arbitrary length.

P)

THEOREM 2.1. (Satz 3) There exist arbitrarily long square-free words over three
letters.

We will prove the following more general result:

THEOREM 2.2. (Satz 4) Over a three-letter alphabet {a,b,c}, there exist arbi-
trarily long square-free words without factors aca or bcb.

6This should be compared with Satz 17 of the next paper.
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These words can be obtained from the periodic word
ababababababababababababababab - - -

by inserting the letter ¢ at well chosen places between a’s and b’s.

Proof. The construction is in several steps’. Let u be a square-free word over a,
b, ¢ without factors aca or bcb.

(1) In the first step, we replace each occurrence of ¢ preceded by a by the word
Ba, and each occurrence of ¢ preceded by b by af. In other words, a factor ac
is replaced by afa and be is replaced by baf. Denote the resulting word by w’.
For instance, if u = acbh, then v’ = afab. Observe that we get u back from u’
by erasing all a’s and replacing each 3 by ec.

We prove that «’ is square-free and has no factor of the form sas or sf3s. Indeed,
if v’ contains a square ss, then, erasing all a’s and replacing each (3 by ¢, one
obtains a square contained in u. Thus, v’ is square-free. Next, assume that '
contains a factor sfs. The central 8 is preceded or followed by an a. Thus, e.g.
s = at, and sfoc = atfatf. Thus, erasing a’s and replacing ’s by ¢ gives a
factor of the form zcxe of u. This proves the claim.

(2) In the second step, aletter v is inserted after any letter of the word u’. Denote
the resulting word by u”. For example, if ' = afab then v’ = ayfyavyby.
Clearly, the word u” has no factor of the form ss (since otherwise u’ would
contain a square).

(3) In the last step, we replace each « in u” by afa, and each b by pag.
Denote the resulting word by w. Thus, for the word u” of the example, we get
w = afaypyayfafy.

We claim that the word w is square-free and has no factors of the form avya and
B~3. To prove the second fact, observe that in «’, letters a or « alternate with
letters b or 5. Thus, the factors of length 3 with a central v in u” are avyb, ay(,
avb, ayf and their reversals. Consequently, the corresponding factors in w are
ayf and fya.

Assume next that w contains a square ss. Since, between two consecutive v’s,
the only factors are a, 3, afa and faf, the word ss and consequently s contains
at least one v. If s contains only one v and this letter is not, say, the last letter
of s, then it is followed by a (or by § and the argument is the same). This
means that ss contains the factor yaya or yafaya, and thus w contains a
factor aya, contradiction. Thus s contains at least two occurrences of the letter
7. Consequently, setting X = {«, 5, afa, faf}, one gets

S =Dp7T17 Y Tm Y

4 . .
The next Satz contains a more compact construction.
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for some integer m > 1, where z1,...,2,, € X, gp € X, and p'p, q¢’ € X for
some p', ¢'.

If ¢ = ¢, then p € X, and replacing in pyz17---v&,7 each afa by a and each
Baf by b, one gets a square contained in u”. The same conclusion holds if p = ¢.
Thus p # ¢, ¢ # € and ¢qp = afa or gp = Paf. It suffices to consider the first
alternative. Then (¢,p) = (o, fBa) or (¢,p) = (af,a). These are symmetric.
Consider the first case. The word w cannot start with py = Savy. Thus, there
is at least a letter a preceding this factor, and consequently gpyazyy -« -ya,7y is
a factor of w. But then u” contains a square. This proves the claim.

The construction shows that, starting with a square-free word u over three letters
a, b and ¢ without factors aca and beb, we get a longer square-free word w over
the three letter o, g and v without the factors aya and gy3. This concludes
the proof. "

THEOREM 2.3. (Satz 5) There exists an infinite square-free word over three
letters. More precisely, there exists a sequence (wy),>o of square-free words
over three letters such that w, is a prefix of wy41.

Proof. Let u be a square-free word over the letters a, b and ¢ with no factor aca
or beb and starting with @ or b. We obtain a new word by applying to u the
function o defined by

a — abac
b — babc
¢ +— becac if ¢ is preceded by a
¢ — acbe if ¢ is preceded by b

It is easily seen that the word o(u) is the same as the word w deduced from
u in the preceding proof, when a, 3, are replaced by a,b, ¢ respectively. Thus
o(u) is square-free and has no factor aca or beb. Consequently, starting with
wo = a, one gets a sequence w, = 0"(wg) of square-free words with the required
property. L]

As an example, one gets the infinite square-free word

abac|babe|abaclbeac|babe|abaclbabe|ache| . . .

If the letters a, b and ¢ are replaced by vertical sticks of unequal length in this
infinite word, one gets an infinite palisade without two equal consecutive parts:
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We now give another construction of infinite square-free words over three letters
a, b and c. For this, consider three fixed words

p=acab, r=acb, ¢ = abch

and the two sets of words

Ay = parfq A =prq
By = pa'rq B = pcrg
C = parfl'q C = preg

Dy = pa'rfq D = pereq

Here a, 3,a', 3" are new letters. The second column of words is obtained from
the first by applying the morphism 6 defined by:

Set Xy = {Ay,By,C1, D1} and X = {A, B,C, D}. It is easy to check that the
product of two distinct words in X is square-free. Observe also that exchanging
a and b converts A and D into their reversals.

The construction is in three steps, and starts with an infinite square-free word s
over the letters a, o/ and " without factors o’aa’ and f'af’. We have already
seen that such a word exists. As an example, consider

S:O/ﬁ/a/aﬂ/a/ﬁ/aa/---

(1) In the first step, we insert a letter 3 between any two consecutive occurrences
of a and ' in the word s. Denote by u the resulting word. In our example,

u= O/ﬁ’a’ﬂaﬂ'a’ﬁ’aﬂa’---

If p is the projection that erases [, then p(u) = s. Clearly, u is square-free.
Also, it has no factor of the form wfw, because s is square-free. We also show
that u has no factor of the form waw. For this, observe that every a in s is
preceded or followed by a letter o’. Indeed, otherwise, there would be a 3'af3’.
Thus, every « in u is also preceded or followed by a . This implies that, if we
define a morphism 7 by

o — €

P

T ’

o — a

G

then 7(u) = s. Thus, if u contains a factor waw, then s contains a square.
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(2) In the second step, we replace every factor af, o', af’, o/ " in u respectively
by Ay, By, C1, D1, and denote the resulting word by wy. In our example, we
get

W1 = D1B101D1A1 tee

Formally, if 7 denotes the projection of {a,b,c,a,d’, 3, 5}* onto the monoid
{a,d/,3,3'}*, then m(wy) = u. The word wy is square-free, and contains no
factor of the form waw or wfw, since otherwise u would contain such a factor.

(3) Finally, let w be the word w = #(wy), where 6 was defined above. We show
that w is square-free. Assume the contrary. Then w contains a square, say uu.
We have already seen that wu is not a factor of a product of two words in X.
Consequently, wu contains as a factor at least one word in X. This implies that
u itself contains one of the words p or ¢ as a factor, and also, setting ¢t = ¢p,
that w contains r or ¢ as a factor. Two consecutive occurrences of r and ¢ in w
are either adjacent or separated by the letter ¢. Thus, u can be factorized into

U = ws1d182 -+ - dp_1Sm ¥

for some m > 1, where s1,...s,, arein {r,t}, dy,....d,_1 € {¢,¢}, and vw €
{e,¢} or vw = dsd', with d,d" € {¢,c} and s € {r,t}. There are two adjacent
factors Uy and Us in w such that 8(Uy) = 6(Uz) = u. We may assume that Uy
does not start with a or g and U; does not end with a or §. This implies that

Uy = wi816015202 -+ - 015,01
Uy = w381015202 -+ - 011502

where §; is entirely determined by s;d;s;41. Now, vyws is neither « nor 3, since
otherwise wy would have a factor of the form vawv or vGv. Also, vywy is neither
o' nor (', since otherwise Uy = Uy. Thus 0(vywy) = dsd’, with s = r or s = 1.
However, this determines d and d’, and implies that /; = U;. The proof is
complete. "

THEOREM 2.4. (Satz 6) There exists an infinite cube-free word over two letters.

As we shall see, we obtain such a cube-free word over a and b by replacing, in
any infinite square-free word over the letters z, y and z, every = by a, every y
by ab, and every z by abb®. In other terms, the cube-free infinite word is the
image of a square-free infinite word under the morphism f: {z,y,z}* — {a,b}*

defined by
T —a
f:yr—adb
z — abb

Let X = {a,ab,abb}. This set is a suffix code?.

8See also the 1912 paper.
? As we shall see, this observation basically suffices to prove the following elementary lemmas.
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LemMma 2.5. (Hiilfssatz 1) If v and v are words over the letters x and y such
that f(u) = f(v), then u = v. n

LEmMA 2.6. (Hilfssatz 2) The morphism f is injective.
Proof. This holds because X is a code. "

Let x be an infinite square-free word over the letters z, y and z, and set y = f(x).

LemMma 2.7. (Hiilfssatz 3) If y contains a factor uuwu, then u does not start with
the letter a.

Proof. If u starts with the letter a, then there is a (unique) factor v of x such
that f(v) = u. But then y contains the square vv. "

LemMma 2.8. (Hiilfssatz 4) If y contains a factor uwu, then u does not start with
the word bb.

Proof. If u does not begin with the word bb, then any occurrence of u is preceded
by the letter a, and also u ends with an a. Thus, setting u = u'a, the word y
has a factor au’au’au’, contrary to the preceding lemma. "

LemMma 2.9. (Hiilfssatz 5) If y contains a factor wuu, then u does not end with
the letter b.

Proof. In view of the preceding lemmas, v must start with ba. Thus, assuming
the contrary and setting u = bau'b, one obtains in y the factor bbau’bbau’bbau’b.
But then y contains the factor au'bbau’bb, showing that x contains a square.

We now can prove the theorem. Assume that y contains a cube wuu. Then u
starts with ba and ends with a. If u = ba, then x contains the square yy. If
u = bau'a for some word u', then wuu = bau'abau’abau’a and y contains the
factor abau’abau’, showing that x contains a square. "

It is easily verified that a word f(x), where x is square-free, may have overlaps,

but if zuzux is an overlap, then z is a letter.!?

1°Compare with square-free words of type (I) in the 1912 paper.



Chapter 3

Thue’s Second Paper : On the relative
position of equal parts in certain sequences
of symbols

For the development of logical sciences it will be important, without consid-
eration for possible applications, to find large domains for speculation about
difficult problems. In this paper, we present some investigations in the theory of
sequences of symbols, a theory that has some connections with number theory.

3.1 Introductory Remarks

1.— A word over an alphabet
A= {a17a27"'7an}

of n letters (symbols) may have several meanings. For instance, a book can be
viewed as a sequence of typographic symbols. The letters of the alphabet A can
also be interpreted as mathematical entities or as substitutions for example. Let
p be a positive integer. Then it is straightforward that any word w € A* of length
m > nP 4+ p has two identical factors of length p. Observe that if w is viewed
as a book, these unavoidable repetitions may not be meaningless. Without
considering the meaning of words, it is of interest to investigate whether finite
or infinite words can be constructed that have prescribed properties concerning
the apparition of symbols. We expect that the results of such investigations have
applications to usual mathematical problems. As an example, the existence of
nonperiodic decimal developments proves that irrational numbers exist. The
following is a general problem of this kind concerning the existence of identical
factors in a word.

Let A and B be finite disjoint alphabets. A morphism h : (AU B)* — A* is
called an eatension if h(a) = a for all @ € A. The problem is: given n words
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Wi, ..., w, over AU B, does there exist an infinite word x over A such that, for
any extension h, the word x has no factor in the set {h(wq),...,h(w,)} 7 (See
also Notes 4.3)

In the sequel, we will consider onesided infinite words, twosided infinite words,
circular words, and ordinary finite words. Finite and onesided infinite words are
called open words, twosided infinite and circular words are said to be closed.

2.— We are concerned with the construction of words with the property that
any two occurences of the same factor are as far as possible one from each other.
In any word w of length at least n + 2 over an alphabet of size n, two equal
factors cannot always be separated by a word of length greater than n—2. More
precisely, if |w| > n+ 2, then w admits a factor of the form uvu, with v # ¢ and

|v] < n—2.
Indeed, assume on the contrary that there is a word w = a1 - -ap@,410n42
without a factor of this kind. Then the letters aq,...,a, are all distinct, and

moreover ¢y = ap41 and az = a,42. But then w = ayayvaay with |v] = n — 2.

We shall see later how to construct, for n > 1, arbitrarily long closed words, and
infinite words, such that any two equal factors are always separated by at least
n — 3 symbols.

A word over an n-letter alphabet is called irreducible if two occurences of a
factor are always separated by at least n — 2 letters. The word is called reducible
otherwise!. Formally, w is irreducible if for any factor

Z=zu = uy (z,y,uc¢)

one has
2] = 2ful = Jo] = Ju] > n— 2.
z
z ‘ U
U ‘ Yy

One reason for this terminology is the following. Say that two words are equiv-
alent if one word is obtained from the other by deleting or replacing factors of
a given form by some fixed shorter words. Then, if factors of this prescribed
class are unavoidable in sufficiently long words, this implies that there exist only
finitely many classes for this equivalence relation.

'Examples : For n = 3, a word w is irreducible iff it is square-free ; for n = 2, it is
irreducible iff it is overlap-free. Observe that the definition given in the previous paper applies
in this context only for a three letter alphabet.
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As an example, consider words that are composed of numbers which are alter-
natively positive and negative. Assume now that such a word u has two factors
x and y which are the same up to the signs of the numbers, and which are
separated by a factor z of odd length if  and y have even length, and with z of
even length if # and y have odd length. Then u has the same algebraic value?
after removing both & and y. Moreover, the resulting sequence is still formed of
numbers with alternating signs.

Another example is the following. Consider a sequence u of parallel glass prisms
arranged in such a way that a perdendicular light ray passes through all prisms.
Let v be a similar sequence of prisms with the additional property that outcom-
ing rays are always parallel to ingoing ones. If w contains » as a factor, this
means that the deletion of v does not modify the angle of the lightrays.

Let us list some simple facts. We consider alphabets with n letters, assuming
n > 2. Let u be a word of length r = d+ n — 3, where d > 2 if n = 2 and
d > n — 2 otherwise. In other terms, r + 1 =difn =2, and r > d if n > 3.
Fact. Any factor of length k > r + d in the infinite word u* is reducible.

Indeed, such a factor has the form w = w'v, where ' is some conjugate of u,
and v is a prefix of «'*. If |v| > |u|, then w is an overlap. Otherwise, v’ = vy
for some word y, and w = vyv, with

yl=lul—fo| <r—d=n—3 .

Fact. If all factors of length d of u? are irreducible, then any reducible factor
of u or of u* has length at least r 4 d.

Proof. Let z be a reducible factor of u® of minimal length. If |2| < d, then
|2| < 147 and z is a factor of u?, contrary to the assumption. Thus |z| > d.
Assume, arguing by contradiction, that

d<lzl<r+d.
Since z is reducible, there are nonempty words z, y, ¢t such that
z=uxt =1y

and moreover
|z =2[t| = |z| = |t <n —3.

We show first? that
|z| = |t =n—-3.

2Thue means of course the sum of the numbers composing .
?This is not done in the original paper.
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Indeed, consider first the case where n > 3. If, contrary to the claim, |z| < [¢],
then zs = t for some nonempty word s. Thus z = zas, showing that zz is
a reducible factor which is shorter than z. Thus |z| > [|t|, which proves the
equality for n = 3. Assume now n > 3. Since |z| > ||, we have z = ts for some
word s, whence y = st and z = tst.

t ‘ a s ‘ t a

If |s|] < n—4,let a be the last letter of ¢, and let ¢t = t'a, s’ = as. Then
2" = t's't" is a shorter reducible factor than z, except for the case where t' = ¢.
Thus |¢t| = 1. This implies that |z| = 24 |s| < n — 2 < d, again a contradiction.
We thus have proved that |s| = n — 3.

Consider now the (easier) case n = 2. Then |z| < |¢|, and consequently zs =t =
sy for some nonempty word s. Let a be the first letter of ¢ (and of 2 and of s),

and let # = az’. Then 2z = xas starts with az’az’a which is a reducible prefix.
Thus this word is equal to z, showing that |s| = 1. This completes the proof.

We now come back to our initial claim. Since |z| = [t| + n — 3, and
|zl =2|t|+ n—-3<r+d=2d+n—-3

one has 2[t| < 2d, whence |t| < d, |z| < r. Let p be the word of length r — |¢|
such that pt = ' is a conjugate of u, and let s be the word of length r — |y| > 0
such that v’ = ys.

Then

u'u' = pipt = pzs = ptys = pats = prht
where h is some word of same the length as s. Consequently ¢s = ht. This word
clearly is reducible, and has length » — n + 3 = d, a contradiction. "

A closed word of length r over an n-letter alphabet is called irreducible if r >
2n — 6 and if every open factor of length r — n 4 3 is irreducible. Otherwise, the
word is reducible.

For n > 2 and arbitrary r, a closed word of length r is a closed irreducible word
if any two disjoint occurrences of the same factor are separated by at least n —2
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symbols. The word is reducible if it contains two disjoint occurences of the same
factor separated by fewer than n — 2 symbols®.

3.— To each set § of words which all start with the same letter, say a, one
associates a tree that represents the set in a simple way : the root is a vertex
labelled with the common initial letter ¢ of the words in 5. Next, let T =
a 15 = {w|aw € 5} and set

T=JT, T,=TnbA".
beA

For each b € A with Ty # 0, the root of the tree of S is connected to the root
of the tree associated with 7. As an example, Fig. 1 shows an initial part of
the tree of words over the n-letter alphabet {a,b,..., h,k} (n > 8) starting with
abedef ... h and which are irreducible.

Figure No. 1

4.— Let A be an alphabet with n letters. We observe the following immediate
facts. In an open irreducible word w over A, any n — 1 consecutive letters are
distinct.

Next, if w and wa, with a a letter, are irreducible words and |w| > n — 2, then
a is distinct from the n — 2 rightmost letters in w.

Let w be an irreducible word. The word wa, with a a letter, is called a right
extension of w if wa is irreducible. If |w| > n — 2, then w has at most two right
extensions.

Let w be an irreducible word of length > n, and assume that it has two right
extensions wa and wb. Then setting w = w'edu with |u| = n — 2, one has
{e,d} = {a,b}.

Consider a tree containing all irreducible words starting with a given letter a,
and let b be an arbitrary letter. If the path starting at the root and ending in

*There seems to be a third case, namely where the two occurrences are overlapping. But
this also implies that the word is reducible.
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a vertex labelled with b is composed of at least » — 2 symbols, then the vertex
labelled b has at most two sons.

FacT. An irreducible word w has at most one right extension if and only if it
has a suffix of the form upu, with w # ¢ and |p| = n — 2.

Proof. If w has at most one right extension, then wa is reducible for all letters a
with at most one exception. Take such a letter a which is distinct from the n —2
last letters of w. Then wa = w'upuw” for some words w', w”, u, p, with u # ¢
and |p| < n — 3. Since w is irreducible, the word w” is empty and thus the last
letter of u is an a. Set u = va. Then w = w'vapv. If v is not empty, then since
w is irreducible, one gets |ap| > n— 2, which, combined with the first inequality,
gives |ap| = n — 2 and the announced suffix. Assume finally that v = ¢. Then
w = w'ap, and since a was chosen in an appropriate way, |p| > n — 2.

Conversely, assume that w = qupu for some word ¢g. Then w has at most two
right extensions wa and wb, and a,b are different from the last n — 2 letters of
pu. They are also different from the first letter of p. This shows the result if
|u| > n, and also if u is a single letter. Thus the claim follows from the next
fact. "

Fact. Any word of the form upu with 2 < |u| < n and |p| = n — 2 is reducible.

Assuming the contrary, let ¢ be the first letter of p and let A — alph(p) = {a, b}.
Then by considering the word pu, the first letter of u must be either a or b, and
the second letter is either b or a ; it cannot be ¢ since otherwise up would be
reducible. Thus

upu = abu'pabu’

for u' defined by u = abu’, and 1 < |u'| < n —3. The last letter v’ is none of the
letters in alph(p), and is neither @ nor b, a contradiction.

Fact. If a word quvq is a proper suffix of an irreducible word pup and |u| =
|v] = n — 2, then qvq is a suffix of p.

Indeed, ¢ is a suffix of p, and consequently gvg is a suffix of qup. But the left
occurences of ¢ in these two words must be separated by at least n — 2 = |u]
symbols. The claim follows.

Thus p = tqvq for some word t. This implies that u and v start with different
symbols. Indeed, if u = au’, v = av’, then

pup = tqav’'qau'p

has the reducible factor qav’'qa. Observe also that any word with suffix pup
cannot be extended to the right into an irreducible word. By a previous remark,
we know that the n — 2 last symbols of ¢ are all different ; they are also distinct
from the first letter of u and from the first letter of v. Thus these letters
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altogether form the alphabet. Assume now that pup can be extended by a letter
¢. Then ¢ can be neither one of the n — 2 last letters of ¢, nor the first letter of
u or of v. Thus ¢ cannot exist.

As a consequence, an irreducible word cannot have three distinct suffixes pup,
quq, rwr, with |u|] = |v| = |w|. Indeed, otherwise, and assuming |r| < |¢| < [p|,
the first occurence of p in pup has as suffixes both qvq, rwv, and is extensible
to the right.

Fact. If x is an infinite irreducible word, then for each integer m, there exists
an irreducible word w of length m that admits at least two right extensions.

Indeed, otherwise there is an integer m such that any extensible word has only
one right extension. This would hold also for words longer than m, since each
such word has a suffix of length m. However, this means that the infinite word
x, which then is completely characterized by its first m letters, is ultimately
periodic, which is contrary to the assumption that it is irreducible.

5.— Again, we consider a fixed alphabet A with n letters; we first assume n > 3.

Facrt. Let u and p be words, with |p| = n — 3, and such that up and pu are
irreducible. If the (reducible) word upu has a (reducible) proper factor of the
form wqw, with |q| = n — 3, then |wqw| < |u| + |p| (i-e. |w| < |ul/2).

Proof. Since wquw is a proper factor of upu, there exist words z, z, with |z|+|z| >
0 such that
UPU = TWGWS .

We may assume that zw is a prefix of u (otherwise wz is a suffix of u). Let ¢ be
such that u = zwt.

In order to prove the claim, assume now, arguing by contradiction, that |wqw| >
|up|. Then |zz| < |u|. Therefore, there is a nonempty word y such that u = zy=.
From this, it follows that

wqw = YZpry .

Since |¢| = |p|, one gets |y| < |w|, and equality cannot hold because otherwise
|zz| = 0. Thus y is a proper prefix and a proper suffix of w. Since w is a factor
of the irreducible word u, there is a factorization

w = ysy

with |s| > n — 2. Let ¢ be such that wt = yz. Recall that v = 2wt. Thus,

qys = ipz .
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z ‘t
U p‘ U
T ‘q‘ w ‘ z
x|y z
sly[t]p]a]
q|Y s

If |tp| < |qy|, then |z| > |s|, and consequently z = z’s for some 2’. But then
pu = pryz = pr'swt = pa'sysyt
is reducible. Consequently |tp| > |qy|, and tp = qyy’ for some y’. But then

up = xyzp = zwitp = 2ysyqyy’

has the reducible factor yqy, again a contradiction. "

Fact. Let w be an irreducible circular word, let p be a factor of length n — 3
of w, and let u be the rest of w, i.e. such that w = wup. Then upu has no
proper irreducible factor. If furthermore |u| > 2, let w = ha, with a in A, and
let k = ap. Then hkh is irreducible.

Indeed, if there is an irreducible factor in upu, then we may assume, by a previous
remark, that it has the form vgv for some v, and some ¢ with |¢| = n — 3. But
then |vgv| < |up| = |w|, and vgv is a factor of w. This proves the first part.
Next

hkha = hapha = upu

and therefore hkh is an irreducible factor of upu.

Fact. Let w be a circular irreducible word, and suppose that w has a factor of
the form vqv with |q| = n — 2. Suppose further that w ~ vqvr with |r| > n — 2.
Then, there is a word v ~ w which has no right extension.

Indeed, let r = pas with |p| = n — 2 and a € A. Then svqvgasvqv has no right
extension.

Two words x,y € A” are called congruent® if there exists k& € Z such that
x(1)=y(i+ k) forall i € Z. A word x € A% is simply recurrent if every factor
of x has infinitely many occurences in x. A word has only h-bounded overlaps
if for every factor of the form zuzuz with u # ¢, one has |z| < h. We say that
the word has bounded overlaps if it has h-bounded overlaps for some h. Finally,
we say that x avoids a finite set X C (AU B)*, where AN B = () if there is no
extension h : (a U B)* — A* such that all words h(z), (z € X) are factors of x.

®Morse, Hedlund call them similar.
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TrHeorEM 1.1. (Satz 1) Let x € A” be an infinite word that satisfies the follow-
ing conditions:

(i) x is simply recurrent;

(it) x has bounded overlap;
(7i1) x avoids a fixed set X C (AU B)*.
Then there exist infinitely many twosided infinite words with the same three
properties.

Proof. We construct a sequence (Uk)kzo of factors of x as follows :
(i) ug is an arbitrary nonempty factor of x.

(ii) assume uy is constructed. Then to a given occurence of uy, there is another
occurence of ug, to the right or to the left. Suppose it is to the right. Thus there
is a word vy such that

UR VLU

is a factor of x. Consider one occurence of this word, and consider any factor
ay that extends the occurence to the left, and a factor wr4q that extends the
occurence to the right and that, furthermore, has the property that wg4q is not
a prefix of ukwk+16. We thus have obtained a factor

Uk4+1 — QpUEVEUEWE+1 — W_ (k1) Uk WE+1
with w_(r41) = apugvg. A symmetric definition holds in the symmetric case. It
is not very difficult to check that the infinite word

Y=...W_3W_W_1UWLWW3 . ..

is not congruent to x but has the same factors as x and therefore has the
properties claimed. "

The construction can be used for deriving similar results on infinite words. We
consider the following problem. Let h : A* — A* be a fixed nonerasing mor-
phism. Does there exist a twosided infinite word xg € AZ such that there is a
sequence

XlgeoogXppgeos

of twosided infinite words over A with
MXm41) = X -

If this holds, and if furthermore alph(h(a)) = A for a € A then every factor of
Xo appears infinitely often in xgq.

Let ug be a nonempty word, and assume that

h(uo) = VoUpgWo

6This is possible because x has bounded overlaps.



dnue’s second raper
for nonempty words vg, wo. Then setting, for m > 0,

Ung1 = P(Un ), Vg1 = W(vp), W1 = h(wy),
we get
Um+1l = UnUpWm = Uy Upp—1 * - VoUQWQ * * - Wiy -

Therefore, the twosided infinite word x defined by
X = U2 VoUpgWoW1 Wy - - *

is a fixed point for h, i.e. h(x) = x.

After these introductory remarks, we will consider in more detail irreducible
words for special values of n, the number of letters. As we shall see, closed or
twosided infinite irreducible words have some analogy with Diophantine equa-
tions.

3.2 Sequences over two symbols

7.— We now consider a fixed alphabet A = {a,b}. A finite or infinite word w
over A is irreducible if it has no overlap; in the sequel, we’ call it overlap-free.
A circular word w is overlap-free iff the open word ww is overlap-free. For any
finite or infinite word w, we denote by w the word obtained by exchanging the
a’s and b’s in w.

ExamprLE. The circular words aa and abab have overlaps. The circular word
aab is overlap-free.

It is not difficult to verify that a circular word of length r is overlap-free iff all

"the translator
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factors of length 1 + r of the open word ww are overlap-free.®

Figure No. 2

Figure 2 shows all overlap-free words of length at most 12 starting with the
letter @. The final letters of words which cannot be extended are marked with
a circle.

Through a sequence of statements we will in particular prove the existence of
infinite overlap-free words. We begin with some lemmas.

LEmMA 2.1. (Satz 2) Let X = {ab,ba}. For any x € X*, one has aza ¢ X* and
bab ¢ X*.

Proof. By induction on |z| , the case |z| = 0 being trivial. Let 2 € X*, 2 # ¢,
and assume that v = aza is in X* (the case bab € X* is similar). Then the
first and the last letters of x must be 6. Thus z = byb for some word, and
consequently

u = abyba.

Since u € X*, one has y € X*, and by induction w = byb is not in X, contrary
to the assumption. "

We consider the two morphisms

_a—ab _awba
’u'b»—>ba ’u'b»—>ab

8TFor, assume that ww = ycrecrcsr with ¢ € A, © of minimal length, and |czcze| > 1 + |w].
Then either ycxc is a prefix of w or, symmetrically, czcz is a suffix of w. In the first case,
the word czcz has another occurrence of czc, and the length condition implies that these
occurrences overlap.
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LemMA 2.2. (Satz 3) If w is an overlap-free word, then p(w) and fi(w) are
overlap-free.

Proof. Assume that p(w) has an overlap. Then
p(w) = zevevey

for some words 2, v, y and a letter ¢. Since |u(w)| is even and |cveve]| is odd, it
follows that |2zy| is odd and therefore one of |z| or |y| is even and the other is
odd. By symmetry, we may assume that |z| is odd and |y| is even.

Set X = {ab,ba}. Then y € X*, and furthermore |v|is odd. Indeed, since veve €
X*, the contrary would imply that both v and cve are in X ™, in contradiction to
the previous lemma. It follows that vcisin X™*, and zcis in X*. Thus w = rsst
with p(r) = xe, p(s) = ve, p(t) = y. But r and s have the same final letter,
showing that w has an overlap. "

A similar proof gives the following lemma.

LemMMA 2.3. (Satz 4) If w is an overlap-free circular word, then p(w) and j(w)
are overlap-free. "

By induction, p?(w) is overlap-free for any overlap-free word w and for any
positive integer p. Set for n > 0

wy, = p"(a), v, = p"(b).
THEOREM 2.4. (Satz 5) There exists an overlap-free infinite word over two let-
ters.

Proof. Let
t = avgvivy...0,...

By induction on n, u,41 = avovy...v, for n > 0. Thus

p(t) =t
and t is overlap-free. "
COROLLARY 2.5. (Satz 6) Let x and y be infinite words with x = p(y). Then
X Is overlap-free iff y is overlap-free.

Proof. It is easily seen that if x is overlap-free, then y is overlap-free. The
converse follows from Satz 3. "

Observe that uy, and v, are palindromes and that @g,41 = v2,41 for n >= 0.
Indeed, by induction,

2 ~ ~ o~ o~ ~
Un42 = K (Uzn) = U2nV2pV2pU2n = U2 V2nV2nU2n = U2n42.

The other verifications are similar.
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THEOREM 2.6. (Satz 7) Let w,, = 9, for n > 0. The twosided infinite word
u T e e e wn PRy wzwlwoaa/vo/vl .. -/Un PRy
is overlap-free.

Proof. Of course, u = tt. From the relations above, it follows that

VUn+2 n even
Wy + -~ WpWoadadvg * * Uy = dd
Up41lUny1r N O .

This holds indeed for n = 0, 1; next, if » is even, then w, = v, and
Wy, =+ - WL WRAAVQ * + * Vpy = VpUp UV = Uy -
If n is odd, then w, = u, and
Wy = Uy, = Up V1 Uy = UpVp Vp Uy = u721+1 .
The result follows. "

Observe that }
p(t)t = tt

is also an overlap-free twosided infinite word.

8. — Let w be an overlap-free word over A. If |w| > 5, then w has at least one
factor in the set Y = {aa,bb}. Consequently , if |w| > 9, then w has at least
two occurrences of factors in Y.

If w is an overlap-free word circular with at least 4 letters, then w has at least
two occurrences of factors in Y.

PRroPOSITION 2.7. (Satz 8) Let w be a word over A of the form
w = cddzeef

where ¢, d, e, f are letters and x is a word. If w is overlap-free, then w and dxe
are in X*, where X = {ab,ba}.”

Proof. By induction on the length of x. Without loss of generality, we may
assume that ¢ = a, whence d = b. If = ¢, then ¢ #d # e # f and w = abbaab
which is in X™.

Assume that  # ¢. Then z = ay for some y # ¢, and

w = abbayeef.

®This means that (a,a) and (b, b) are synchronizing pairs.
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If y starts with the letter a the result holds by induction. Thus assume that
y = bz for some z. If 2 = ¢, then w = abbabee f, whence e = @ and f = b and
wisin X*. If z # ¢, and z starts with b, the result again follows by induction.
Finally, we assume that z = at, and thus

w = abbabateef .

Observe that ¢ # ¢ since otherwise w contains an overlap. Thus ¢ starts with a
b. The result follows by induction. "

ProrposiTION 2.8. (Satz 9) If w is a twosided infinite overlap-free word, then
w = p(u) for some infinite overlap-free word u.

Proof. Let w be a twosided infinite overlap-free word. As observed above, any
long enough factor has two distinct occurrences of a factor aa or bb. The result
follows then from the previous proposition. "

ProposITION 2.9. (Satz 9) For any overlap-free circular word w of length at
least 4, there exists a unique circular word u such that w = p(u). n

ProrposiTION 2.10. (Satz 10) If w is a twosided infinite overlap-free word, then
for any integer k > 1, there is a unique infinite overlap-free word u such that

w = pF(u). n
In taking £ sufficiently large in the previous proposition, one gets:

COROLLARY 2.11. (Satz 11) Let w be a twosided infinite overlap-free word.
Every factor of w appears infinitely often in w. "

Observe that, according to Satz 1, this shows that there exist infinitely many
congruence classes of overlap-free words. (See Notes 4.2)

Another consequence is the following:

THEOREM 2.12. (Satz 12) Let x, y and z be (onesided) infinite words over A,
and consider the twosided infinite words

u=3Xxy, Vv=Xz.

Assume that y and z start with different letters. If u and v are both overlap-
free, then y = z and furthermore either x = pu(x) or x = j(x) and z = u(z) or
z = ji(z) and thus x, y and z are equal to t or t.
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Proof. 1t suffices to observe that for any & > 0, the infinite words x, y, z have
p¥(a) or ¥ (b) as prefixes. n

ProrposiTION 2.13. (Satz 13) Every circular overlap-free word with length at

least 2 is of the form p"(aab), p1"(bba), p"(ab) for some integer n > 0.

Proof. If w has length at least 4, then w = p(u) for some overlap-free circular
word u, and of course |w| = 2|u|. Thus, it suffices to consider the overlap-free
circular words of length 2 or 3. "

COROLLARY 2.14. (Satz 14) Any circular overlap-free word has length 2" or
3.2" for some n > 0. n

Let w be an overlap-free word of length at least 10. Then there exist letters
x,y,z,u and words p,s,t such that

w = pyrrizzus
with @ # y, 2 # u, and
p 6 {8,$,y7 yx7xx7yyx}7 $ 6 {8727 u? Zu? ZZ? Zuu}

and
xtz € {ab,ba}™.

This observation is useful in the proof of the following theorem:
THEOREM 2.15. (Satz 15) Let n > 1 and let w be an overlap-free word of length

n. If there exist words u, v of length at least 8n such that wwuv is overlap-free,
then any overlap-free word of length at least 26n contains w as a factor.

Proof. Let uwwv be overlap-free, with |w| = n and |u|,|v] > 8n. Let k =
1+ |logyn|. We construct a decreasing sequence of words

Sp = URWRYY, (0<h<k)

with ug = u, wg = w, vg = v, such that u(sp41) is a factor of s; and wy, is a
factor of p(wp41):

\ (uhgt) \ f(wht1) ‘ (V1) ‘
‘ up, ‘ Wwh, ‘ Vh ‘

Assume that |wp| > 10. Then, according to the preceding observation, there
is a factor s’ of wy of length at least |wp| — 6 in {ab,ba}*. Define sp41 =
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Uh4+1Wh41Vh41 in such a way that s’ = pu(sp41) and furthermore wy, is a factor
of p(wp41). Clearly

2{upa| 2 fun| =3, 2lopga| = fon] =3
|wp| < 2{wpq1| < Jwp] + 2
whence by induction

|ul |w| |w|
|uh+1| > oht1 - 37 ohtl = | h+1| < oht1 +2.

Since |u| > 8n > 8-2+~1 it follows that

355,

|uk 1|> o

Thus sp_1 has length greater than 10, and consequently the word s; exists. It
follows that w is a factor of u*(a) or of u*(b).

Consider now a word f of length 26n. By the observation above, if f is overlap-
free, then there are words p, s, and a word ¢ such that

J=pu(g)s

and |p|,|q| < 2. Thus there is a sequence of words fy, fi,... such that f; is a
factor of pu( fr41) and

2 fogr| 2> | ful — 4.

This implies that
il

|fh.|_1| > Qh-l-l —4.

Since |f| > 26n > 13- 2%, one has

|f|>m—4>9

Thus f contains also si. This proves the result. "

Observe that since the word w of the preceding theorem is a factor of some p*(a)
or u¥(b), this means that w is extensible to a twosided infinite word.

A morphism h is called overlap-free if h(w) is overlap-free for all overlap-free
words w. The next result gives a characterisation of overlap-free morphisms.
(See Notes 4.2)

THEOREM 2.16. (Satz 16) For any overlap-free morphism h over two letters,
there is an integer k > 0 such that h(a) = u*(a), h(b) = u*(b) or h(a) = p*(b),
h(b) = 1¥(a).
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Proof. Set h(a) = u, h(b) = v. The result holds if |u| = |v| = 1.

We prove first that if |u| > 1, then |u| is even. Indeed, assume first that |u| = 3.
If w = aab or u = baa, that vuuv has a factor b(aab)(aab) or (baa)(baa)b.
Similarly, if v = aba, then vvuuvv or vuv have an overlap, according to the first
and the last letter of v. Thus |u| > 3. If |u| > 4, then u has the form

u = paas or u = pbbs
for some nonempty words p,s. Assume the former. The word
VUUY = VPAASpaas
fulfills the requirements of Satz 8. Thus the central factor aspa has even length,

showing that u has even length. This proves the claim.

Next we show that |u| = 1 implies |v| = 1. Indeed, if say u = a, and |v| > 1,
then v has even length. Moreover, since vuuw is overlap-free, v = bwb for some
word w, and w # ¢ because vv must be overlap-free. But then, in

vouuv = bwbbwbaabwb
the central factor bwba has even length, again by Satz 8. Thus |v| is odd, a
contradiction. This shows the second claim.

We now prove the result by induction on |u| 4 |v|, assuming |u| > 1, |v] > 1.
We already know that u and » have even length. Without loss of generality, we
may assume that u starts with the letter a.

If v = awa, then w is not empty. Thus w = bzb for some word z, since otherwise
ww contains an overlap. Moreover, w contains a factor aa or bb. Indeed, otherwise
w = (ba)"b for some n, which is impossible because |w| is even. Thus w has the
form w = zddy for some letter d and some words z, %, and

wu = arddyaarddy

showing that dya and axd are in X*, with X = {ab,ba}. Thus, u also is in X*.

If w = awb, then v = bza for some z. The word
vuvy = awbbzaawbbza

is overlap-free, and as above, this shows that » is in X*. Similarly, v is in X*.

It follows that w = u(u’), v = p(v’) for some words «’, v, and that the morphism
h' defined by h'(a) = «', h'(b) = v’ also is overlap-free. Since h = p o h/, the
result follows. .

10.— We now give some results about the tree of overlap-free words over two
letters @ and b. We set X = {ab,ba}.
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LEMMA 2.17. Let ux, uy be two overlap-free words, with |z|, |y| > 2, and
assume that x and y start with different letters. If u is of the form u = abbu’
for some word ', then uw € X*. If furthermore,

x=7a'eef
y=y'ggh
where e, f, g, h are letters and z',y" are words, then x,y € X*.

Proof. Since uzx and uy are overlap-free and z and y start with different letters,
the word «’ is not empty. Set u' = ve where ¢ is a letter. Then either uxz or uy
is of the form

u = abbvecdw

for some letter d and some word w. By Satz 8, the word bve is in X*. Thus
ue X"

Since ux = abbu’z’eef, the same proposition shows that bu'z’e is in X*. It
follows that bu’ is in X* and finally z € X*.

LEMMA 2.18. Let u be a prefix of t of length m = |u| > 3, and set t = ux. If uy
is a finite overlap-free word with |y| > m — 2, and if x and y start with different
letters, then m is a power of 2.

Proof. If m = abb then y starts with b and uy contains a cube. Thus, m > 4.
By the lemma above, u is in X*. Furthermore, and still by the lemma, there
is a prefix z of y which differs from y by at most 2 letters and which is in X™.
Consider now the words

Again u'x’ = t, v’z is overlap-free, and x’ and 2’ start with different letters.
Since |z'| > (m — 2)/2, the lemma follows by induction. .

LEMMA 2.19. Let u be a word of length at least 4 such that auuc is overlap-free,
with ¢ a letter. Then u € X*.

Proof. We first observe that u cannot end with an a, and that the first letter of
u is not ¢. We shall see that in fact u starts with baa or abb or with babaa or

with ababb.

We first show that bb is not a prefix of u. Indeed, otherwise u = bbu’b for some
word u' and wu contains a cube. Clearly, aa is not a prefix of w.

Next, we show that babb is not a prefix of u. Indeed, otherwise v = babbu’ for
some ', and since uu is overlap-free, v’ is not empty. More precisely, v’ starts
with @ and ends with ab, thus v’ = avab or v/ = ab. In the first case, uu =
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babbavabbabbavab contains the factor avabbabbava which contains an overlap. In
the second case, uu = babbabbabbab contains an overlap.

Next, if v = abaav’, then v is not empty and ' = vb for some v. Thus
wuc = abaavbabaavbb. Clearly, v is not empty, and ends neither with a nor b.

It follows from this that if the first letter of w is b, then u starts either with baa
or with babaa. Similarly if u starts with a, it starts with abb or ababb. In the
first case,

wu = baavbaav = ba(avba)av

showing (even if v = ¢) that avba € X*. In the second case,
wu = babaavbabaav = baba(avbaba)av

showing that avbabe € X*. "

Finally, let
X = Qg1 Uy -

be an infinite overlap-free word. Then not every suffix a,a,4+1 -+ starts with
a square. In other words, there exists an integer p such that, setting y =
aplpti - -+, both ay and by are overlap-free. Indeed, x has infinitely many oc-

currences of the word ababbaab, and contains no square that starts with babbaab.

3.3 Sequences over three symbols

11.— A word w over a three-letter alphabet is irreducible if it is square-free.
Clearly, if w contains an overlap, it also contains a square. A circular word w of
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length r is square-free iff it contains no square of length less than r.

Figure No. 3

Figure 3 shows all square-free words of length at most 12. Again, a small circle
around a letter means that the corresponding branch in the tree cannot be
extended. A morphism h is called square-free if h(w) is a square-free word for
every square-free word w.

It is convenient!® to call a morphism A over some alphabet A a factor-free
morphism if, whenever h(a) is a factor of h(b) for some letters a and b, then
a = b. This implies of course that h is injective, and in fact that h(A) is a
biprefix code. The set X = h(A) itself will be called factor-free. Next, a set
X = h(A), and by extension the morphism h, is comma-free if, whenever z € X
and wzv € X* for some words u,v, then u,v € X*. Clearly, a comma-free
morphism is factor-free (the converse is false, consider {a,bab}).!!

THEOREM 3.1. (Satz 17) Let A be a three-letter alphabet, and let h : A* — A*
be a nonerasing factor-free morphism. If h(w) is square-free for all square-free
words of length 3, then h is a square-free morphism.

For the proof, we first give a lemma of independent interest:

10for the translator. Sometimes, such a code is called infiz.
1 Observe that the two statements that follow are true for arbitrary finite alphabets.
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LEMMA 3.2. Let A be a three-letter alphabet, and let h : A* — A* be a non-
erasing factor-free morphism. If h(w) is square-free for all square-free words of
length 2, then h is comma-free.

Proof. Set X = h(A). Assume that X is not comma-free. Then there is a
shortest word uzv € X* with 2 € X and w or v not in X*. Since X is a
biprefix code, the minimality condition implies that = is the proper prefix of
some word in X and similarly for ». Moreover, h being factor-free, the word
x has no factor in X. Thus uwazv = yz for two elements y,z in X, and there
are three letters ay,ay,a such that h(ajaz) = wh(a)v. Since the occurrences of
x = h(a), and z = h(ay) overlap, the word zz contains a square and therefore
a; = a. Similarly, a; = a. But then z is a nontrivial factor of 2% and thus, z
itself contains a square, a contradiction. "

Proof of the theorem. Set X = h(A). Assume now that the conclusion of the
theorem is false. Then there is a shortest square-free word w = ajas - - -a,,
where aq, ..., a, are letters, such that h(w) contains a square, say

hMw) = yuuz = z122 -+ -2,

where z; = h(a;) for 1 <17 < n. By the hypotheses, n > 4, and by the minimality
of w, y is a proper prefix of z1 and z is a proper suffix of x,,. Thus, there are
words s # ¢ and p’ # ¢ with

— e _
T = ys, Ty =P 2.

Next, u is not a prefix of s', since otherwise x4 ---x,,_1 is a factor of u, thus also
of x1, contrary to the assumption that h is factor-free. Thus, there exists an
index 7 with 1 < j < n and a factorization x; = ps such that

YU = Ty T;_1P, UZ = STjq1 Ty

or, also,

w=8wyxj_1p=STip1 - Tp1p .
Since n > 4, one has j > 3 or n— j < 2, i.e. at least one of the two occurrences
of u contains one of the z;’s. By symmetry, we may assume j > 3. Thus

!
PUZ = PS Ty X; 1PT = T;T 41Ty

Since X is comma-free and zy---2;_1 # ¢, this implies that ps’ is in X*, and
since no element in X is a prefix of p nor a suffix of s’, in fact ps’ is in X. Thus
ps’ = z; and s = s'. It follows that zg---2;_1p = 241 - - - 2,—1p’, which in turn
implies @g---2;_1 = &j41---¢,—1 and p = p'. Altogether, we have obtained
that

1 =ys, x;=PpPs, sy U = P2,

az...aj_l fy aj_l_l...an_l .
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Now
haya;ay,) = yspspz

contains a square, and thus a; = a; or a; = a,. But then w contains a square,
a contradiction. "

Every square-free word over three letters a, b, ¢ that starts with the letter ¢ and
ends with b or ¢ can be factorized into a product of words A, B, C, D, E, F,
where

A = ab, C = abe, FE = abed
B = ac, D = acbh, F = acbe .

The words AC, AF, BD, BF, CFE, DF, CBa, DAa, FAa, FDa, FBa,FCa all
contain squares. The same holds for the words ADB, BCA, CFD, DEC. On
the contrary, the 18 words in the following diagram

B A A
AiD BiC C<D
3 I
B B A
= = =
D\% E\g F\g

all are square-free.

We observe also that in a twosided infinite square-free word, the words ABA
and BAB do not appear as factors. Any occurrence of AFA, FAF, BEB,
EBE,CDC, DCD is always an occurrence as a factor of respectively BAFAB,
CFAFD, ABEBA, DEBEC, BCDCA, ADCDB.

These considerations lead to the morphisms h and ¢ defined by

h(a) = CA = abcab
h(b) = BE = acabcb
h(c) = FD = acbcach

and
gla) = AD = abacbh
g(b) = EB = abcbac
g(c) = C'F = abeacbe

It is immediately seen '? that these morphisms have the properties required by
the theorem. This proves that there exist arbitrarily long square-free words, and
infinite square-free words over three letters.

12 A Thue says.
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COROLLARY 3.3. (Satz 18) Let

x = (abcab)(acabeb)(acbeach)(abeab)(acabeb)(abeab) - - -

be the infinite word over a, b, ¢ such that h(x) = x, where h is the morphism
given above. Then x is square-free.

As we shall see, square-free words frequently are almost completely defined by
the requirement that they do no contain factors in a certain set. We make some
observations. First, every square-free word w over a, b, ¢ of length at least 4
contains all three letters. If |w| > 13, then w contains each of the six possible
two letter words ab, ac, ba, be, ca, c¢b as factor. If |w| > 30, then each of the
words abe, ach, bea, bac, cab and cba obtained by permuting the three letters is
a factor of w.

12.— We now investigate in more detail those square-free words which contain 4
of the 6 words A, B, C', D, F/, I given above in their decomposition. Thus, each
square-free word should lack one pair of factors among the following 15 pairs:

1) aba,aca 6) aca,abca 10) abea,acba
2) aba,abea 7) aca,acba 11) abea,abeba
3) aba,acba 8) aca,abcba 12) abca, acbea
4) aba, abcba 9) aca,acbea 13) acba,abeba
5) aba,acbea 14) acba,acbea
15) abeba, acbea

The pairs of words (6), (7), (8), (9), (13) and (14) transform into the pairs (3),
(2), (5), (4), (12) and (11) respectively by exchanging b and ¢. Thus, we do not
need to consider the first group. Next, any square-free word w of length |w| > 32
necessarily contains one of the factors abca or abcba of group (11). Indeed, the
prefix of length 31 of w contains abc which is followed by a or by ba. Similarly,
one of the factors abca or acbea of group (12) must appear in w.

Also, any square-free word of length at least 60 '® contains one of the words aba
or abca of group (2) as a factor, and the same holds for the words aba and acba
of group (3).

Finally, a square-free word of length more than 47 contains aba or abcba as a
factor. Indeed, the prefix of length 31 contains an occurrence of abe, and the
next factor of length 16 must contain aba or abcba.

Thus, our investigation is reduced to the 4 cases (1), (5), (10) and (15). Now, we
reduce case (10) to case (5). If a square-free word w does not have abca or acba
as a factor, then w has no factor of the form ababf or ycacéd, where a, 3.+, 6 are
words of length at least 3'*. Conversely, if w contains no factor of the form bab

131 found 41.
MTndeed, consider for instance ababf. Then o ends with ¢, thus with be, thus with abc and
symmetrically, 8 starts with cba. But then abcbabcba contains a square.
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and cae, then it contains no factor of the form aabeaff nor vacbad, where a, 3,
v, 6 are letters. This reduces case (10) to case (5).

Thus, we restrict our investigation to square-free words over three letters a, b, ¢,
where the pair of factors

aca and bcb (D)
or

aba and aca (1)
or

aba and bab (I1I)
is missing.

3.4 First Case : aca and bch are missing

13.— We shall call a word over a, b, ¢ that both is square-free and has no factor
of the form aca and beb a word of type (I). Every infinite word x of type (I) is
obtained from the periodic word

- -ababababa - - -

by interleaving it with the letter ¢'®. Any factor of length at least 11 contains
the word caba or cbab. Let p denote a or b and ¢ denote the other letter. Then
we get the following ramification starting with cpgp:

Figure No. 4

This shows that every twosided infinite word of type (I) can be factorized into
a product of words
= caba

cbab

= cach

2 ww 8
l

= cbca

1%See also Thue’s first paper.
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The same holds for circular words of type (I) of length at most 12. Next,
the words xz, ux, yu, zy, zu, uz contain squares. Therefore, one obtains the
following ramification (starting with zz):

Figure No. 5

Every twosided infinite word (or circular word of length at least 32) of type (I)
is a product of the three words

A=z =cach
B = azuy = cabacbcacbab
C =2y = cabacbab

Define a morphism h from {a,b, c}* into itself by:

a— A
h: b—B
cw— C

PROPOSITION 4.1. If x is a twosided infinite word of type (1), then y = h™1(x)
is also of type (1). The same holds for circular words of length at least 32.

Proof. 1t suffices to check that neither AC'A nor BC'B are factors of x. Indeed,
BCB = zuyzuzuy contains a square, and if AC'A is a factor of x, then also

BACAB, and therefore yAC Az = yzayzz. "

Observe that the morphism h is not factor-free because A is a factor of B. How-
ever, any occurrence of A, B or C'in a word h(w) coincides with an occurrence
of h(a), h(b) or h(c). Furthermore, the six words AB, AC, BC, BA, CA, CB

are easily checked to be square-free.

THEOREM 4.2. (Satz 19) Ifx is a twosided infinite word of type (1), then so is
h(x).

Proof. A simple verification shows that h(w) is square-free for all square-free
words of length 3 excepted aca and beb.

Assume that h(x) contains a square t¢. Then t¢ is not a factor of a word h(v),
where v is a factor of length 3 of x. Thus there are words p,q,s € {A, B,C}
and r € {A, B,C}* such that

p=78, s=af, g=ab, t = fra, prsrq = yttd
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and prsrq is a factor of h(x) :

p | v [ s | v [ g
~ t t 0
Bl v JalB] r Ja

Since x is square-free, one has p # s # ¢. Next, psq = vfSafad has a square.
Consequently, psqg = ACA or psq = BCB. If p = A, then either r = B or r
starts and ends with B, and x contains BC B, which is a contradiction. Similarly,
p # B. This proves the proposition. "

This result gives a method for constructing words of type (I). However, there is
a relation between words of type (I) and overlap-free words which gives a more
direct construction. For this, we consider a morphism

where o and § are two letters, defined by:

a— o
T b aff

c— af

THEOREM 4.3. (Satz 20 & 21) Let x be a twosided infinite overlap-free word
over the two letters a, 3. Then there exists a unique infinite word y over the
three letters a, b, ¢ such that 7(y) = x, and moreovery is of type (1). Conversely,
ity is of type (1), then 7(y) is overlap-free.

Proof. Le x be an infinite overlap-free word over a and 3. Clearly, there exists a
unique word y such that 7(y) = x. Assume that y contains a square uu. Then
7(u) starts with the letter a, and 7(wu)a is an overlapping factor of x. Thus, y
is square-free.

Next, 7(beb) = affafaff contains an overlap, so beb is not a factor of y. If
aca is a factor of y, then so is bacab. But 7(bacab) = affaafaaff contains
an overlap, a contradiction. This proves that y is of type (I).

Assume conversely that y is of type (I), and set x = 7(y). If x contains some
overlap s, then s cannot be of the form avava, because y is square-free; thus
s = fvfBvd for some nonempty word v. If v starts with a g, then it ends with
a, and v = awf for some w. But then as is a factor of x, and since

as = affwaffwal

the word y contains a square.
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We show now that similarly, » does not start with the letter a. Indeed, if v = a,
then s = Safaf and since y is square-free, beb is a factor of y. Thus v = awy
with y = aory = . If v =3, then

s = fawfowp
and y contains the square 77! (aw33)?. Thus v = a and v = awa, whence
s = fawafawa

Neither as nor sa is a factor of x since otherwise y contains a square. Thus Fsg3
and even afsf is a factor of x. Since

afsf = affawafawais

the word y has a factor bzezb, with 7(2) = aw. Since z # ¢, it starts and ends
with the letter a. But then aca is a factor of y, again a contradiction. "

3.5 Second Case : aba and aca are missing

Figure No. 6

14.— Since circular words can be treated in a way similar to twosided infinite
words, it suffices to consider only words of the second kind. We shall call a word
over a, b, ¢ that both is square-free and has no factor of the form aba and aca a
word of type (11).
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In the present situation, we obtain the ramification:

Figure No. 7

Thus, a twosided infinite word x of type (II) is the product of words

x = abe
y = acb
z = abeb
u = ache

Next, x has no factor of the form

TYT, yry, ruUT, Yz,
WTWZ, WYWU, WWTW, ZWYW

where w is in {z,y, z,u}*. Indeed, the words

TYTU = TYTYC
yryz = yryx b
zuy = abeycy
yzx = ac bz bx
wrwz = wr wr b

wywu = wywyb
wwrwa = ac bewa bewa
zwywa = ab cbwa cbwa

all contain a square. Furthermore, rwuwy and ywzwz are not factors of x since

zwuwy = a bcwac bcwach
ywzwzr = a cbwab cbwab ¢

have squares.

Set X = {z,y,z,u}. Of course, X is a (suffix) code. Since every word in X
starts with the letter ¢ and the letter a appears nowhere else in words in X, any
twosided infinite word x of type (II) admits a unique factorization into words in

X.

LemMA 5.1. Let p and g be two nonempty words in X*, with p # uz, q # zu.
Then neither pxp nor qyq are factors of an infinite word x of type (II).
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Proof. We prove the first claim, the second is shown in the same manner by
exchanging b and c.

Assume on the contrary that pzp is a factor of a twosided infinite word x of
type (II). Since neither pzpz nor pxpz are factors of x, the factor pzp can only
be followed by y or w. Similarly, it can only be preceded by y or z.

We first show that p = rzuz for some nonempty r € X*. The last factor in X
of p is neither z nor u (because uz is not a factor of x), and it is not y since
every occurrence of y is followed by x, which would imply that pzpz is a factor
of x. Thus

p=1p'=z

for some p’ € X*, and p’ is not empty because zz is not a factor of x. Next
p=7pz=p"uz

because neither zz nor yza are factors of x. By assumption, p” # ¢. The last
factor of p” in X is not y, because yu is not a factor of x. Next, the code word
following pap is u, because p ends with z and zy is not a factor of x. This implies
that the last code word of p” is not z. Thus p” = ra for some word r, and r # ¢
since otherwise pxp contains the square xz.

The first word in X of p is u: indeed, it is neither z (since otherwise pap
contains the square zz) nor z (since otherwise pazp contains the factor uzaz),
and it cannot be y since otherwise pzp must be preceded by z, and zy must be
a factor of x, which is impossible. Putting all together, we have p = uszuz for
some word s € X* which is nonempty, and consequently pzp admits the factor

TUZTUS

But s neither starts with u nor with « (because uxz is not a factor of x) nor
with y (because zuy is not a factor). Thus pzp contains the square (zuz)?, a

contradiction. n

We now change slightly the notation: we consider the set T' = {z,y,z,u} as a
new alphabet and we introduce a morphism f from 7™ into {a,b, c}* defined by

x — abc
y — acbh
z — abcb
u — acbce

Define a set of words over T' by
F =A{wawz, wywu, zwyz, vwzw | w € T} U {ayz, yry, zuy, yza }

and denote by 7 the set of twosided infinite words over T' that are square-free
and that have no factor in F.
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The discussion at the beginning of this section can be rephrased as: Every
twosided infinite word x of type (II) is of the form x = f(y) for some y € 7.
We now prove the converse:

THEOREM 5.2. (Satz 22) If y is a word in 7, then f(y) is of type (II).

Proof. Set X ={f(z), f(y), f(2), f(u)}. Clearly, neither aba nor aca is a factor
of f(y). In order to show that x = f(y) is square-free, assume the contrary,
and let ww be the shortest square in x. Clearly, w contains at least one a. If
w contains only one a, then ww is a factor of some word in X°. However, it is
easily checked that f preserves square-freeness of the factors of y of length 3.
Thus |wl|, > 2, and consequently there are words h, a, 3,t, k such that

hatBatBk

is a factor of x, and further ha, fa, fk € X, and t € X*, t # ¢ and w = atf.

el @ [de i[5

[ v | w ]

If 8 = ¢, then h = ¢ because X is a suflix code, and y contains a square. Thus
B # e Let s = f~1(¢). We prove now the contradiction by showing that Sa
cannot be the image of some letter in {z,y, 2, u}. Assume first fa = f(z) =
abe. Then there are three cases, namely (3, a) = (abc,¢), (5,a) = (ab,c) and
(B, a) = (a,bc). In all cases, y contains one of the words zsas, uszs, sxsz, svsz,
but none of them appears as a factor in y.

Consider now the case fa = f(z) = abcb. Then, arguing as before, y contains
as factor one of the words szsz, yszsx, zszs, which is impossible.

The two cases fa = f(y) and fa = f(u) are handled by exchanging b and c.
The proof is complete. "

We now go one step further. Consider a twosided infinite word y over the letters
x,y,z,u that is in the set 7. The letters following some occurrence of z in y
give rise to the following ramification

Figure No. 8




2.9, Decond Lase ! avba and aca are missing al

This shows that a word y € 7 can be factorized into a product of words

zuyzu = A

zu= DB
zuy = C
zeu =D
ey =F

Again, theset Z = {A, B,C, D, E'}is a code, and the factorization of y is unique.
The word y has no factor in the set

G = {AB,AD,BA,BC,CA,CD,CE,DB,DE,EC,ED,
BEB,EBE,DAC,DCBD,CBDC}.

Also, y has no square of the form #¢, with ¢ in Z*. Indeed,

ABz = zuyzuzuz
ADz = zuyzuzruz

BA = BByzu
BC = BBy
CA=CCzu
CD = zuyzazu
CFE = zuyzay

DBz = zauzuz
uDFE = uzzuzzy
ECzu = zxyzuyzu
ED = zzyzau
yBEBzx = yzuzxyzuzz
ullBEz = uzaxyzuzzyz
DAC = zxuzuyxuzuy
BDCBDA = BDzuyBDzuyzu
ACBDCBE = zuyzuC BzxuC Bzzy

We also observe that the word y has no factor of the form tAt with ¢t € Z*, t # ¢,
t # F, and no factor of the form ¢t Bt with t € Z*, t # ¢. Furthermore, any factor
y of the form tC't or tDt, with t € Z*, t # ¢, can be preceded and followed only
by a £, and any factor of the form tFt can be preceded and followed only by a

C.
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Next, the word y has at least one occurrence of B, which implies the ramification

Figure No. 9

This shows that the word y is a product of the words

BDAEAC = A
BDC =B
BDAFE ="’
BEAC =D’
BEAE = F'

In other words, this leads to consider a new alphabet Y = {A, B,C, D, E} and
a morphism

w:Y =YY"
defined by

A— BDAFAC

B — BDC

w : C— BDAF
D — BEAC
E— BEAE

and a second morphism h : Y* — T defined by

A~ zuyzu
B zu
h @ Cw zuy
D~ zzu
E— zay

(Remember also the morphism f: 7% — {a,b,c}* defined at page 45 by

x — abc
y — acbh
z — abcb
u — acbce

and which is intended to give words of type (II)!)
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Define a set Y of twosided infinite words over the alphabet Y by the conditions
that they are square-free, and that they have no factor in the set

G = {AB,AD,BA,BC,CA,CD,CE,DB,DE,EC,ED,
BEB,EBE,DAC,DCBD,CBDC}.

We can restate the observation made above by saying that any infinite word x
in 7 is of the form x = h(y) for some word in Y. The following statement is
concerned with Y:

ProprosIiTION 5.3. (Satz 23) For any word y in Y, there is a word z in Y such
that y = w(z).

Proof. We have seen already that there is an infinite word z over the alphabet
Y such that y = w(z). Clearly, z is square-free. Next,

A'B"= BDAEACBDC
A'D'B=BDAEACBEACB
B'A" = BDCBDAFAC
B'C' = BDOBDAFE
C'A" = BDAEBDAFEAC
C'D'=BDAEBEAC
C'E' = BDAEBEAFE
D'B'= BEACBDC
ED'E = EBEACBEAFE
CD'E'=CBEACBEAFE
E'C'BD = BEAEBDAEBD
E'C'BE = BEAEBDAFEBE
E'D' = BEAEBEAC
EB'E'B'BEA=FB'BEAEB'BEA
CE'B'E'BD = CE'BDCE'BD
D'A'C" = BEACBDAEACBDAFE
B'D'C'"B'D'A" = BD'BDAEB'D'BDAEAC
A'C'B'D'C'B'E' = BDAEACC'B'BEACC'B'BEAE

This proves the claim®®. "

The converse of the preceding proposition is more involved:

THEOREM 5.4. (Satz 24) If z is a word in Y, then y = w(z) is in Y.

18 A. Thue says. In fact, one must check that the words in the right column cannot appear as
factors in z. For instance, the first of these words ends with C BDC' which is in the forbidden
set G.
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Proof. The proof is by contradiction. It is easily seen that y has no factor in
the set G. It remains to prove that y is square-free. Assume the contrary, and
let ww be a square in y. Then w contains at least one occurrence of the letter
B. In fact, w contains at least two occurrences of the letter B, since otherwise
ww contains only two B’s, which means that ww is a factor of a word w(u)
where u is a factor of length 3 of z. Now, since z is in Y, the factors of length 3
are ACB, AFA, AFEB, BDA, BDC, BEA, CBD, CBE, DAE, DCB, FAC,
FAFE, EBD. 1t is easily checked that none of the images, by w, of these words
contain a square.

Thus w is of the form w = a3, where t = w(s) for some nonempty factor s of
z, and where 3 and a are such that fa = w(N) for some letter N in Y, and
furthermore there exist letters M, P in Y and words 7, ¢ such that ya = w(M),
B6 = w(P). In other words, setting

u=MsNsP

one has
w(u) = ywwd, w = aw(s)s.

Since u is square-free, one has M # N # P. A last notation: we set U = w(Y').
The set U is a suffix code.

We first rule out the cases where f =c ora = ¢. If § = ¢, then w(N) is a suffix
of w(M). Since the code U is a suffix code, this implies M = N, a contradiction.
Thus g # ¢. If a = ¢, then N = C and P = A because only w((C) is a prefix
of w(A). The only letter which can precede both C' and A is D, and the only
letter which can follow ' is B. Thus s starts with B and ends with D, and the
second letter of s (which is either D or V) is I since otherwise u contains the
factor DC'BD. Since s starts with BF, the initial letter M of u (which is either
C or F) cannot be the letter £. Thus M = C, and M = N, a contradiction.

We now examine the possibilities for the letter N, and show that they all lead
to a contradiction.

(i) N = A. Then fa = BDAFAC. Since a is a suffix of another word in U,

and a is a prefix of another word in U, the only factorizations are

(B.a)= (BDA.EAC),  (B,a) = (BDAE, AC)
which both lead to M = D, P = C'. But this implies that s starts with ' and
ends with D. Thus, u contains the factor DAC which is in G, contradiction.

(iil) N = B. Here fa = BDC, and in fact § = BD, a = C since DC is not a
suffix of another word in U. Thus M = Aor M = D (and P = Aor P =C)).

If M = A, then v = AsBs is a factor of z. The first letter of s is F, and since
EBE is not a factor, the last letter of s is C'. Since C' is only followed by B,
this implies that P = B, which is impossible.
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If M = D, then v = DsBs is a factor of z. However, there is no letter that can
follow both D and B in a factor of z, thus this case is impossible.

(iii) N = C. Here pa = BDAE. It follows that M = F and P = A or P = B.
The second case is ruled out by the fact that there is no letter preceding both
B and C'. Thus u = FsCsA. The first letter of s is B, and the last letter of s
is D (the only letter that can precede both C' and A). This shows that s has
length at least 2. The second letter of s is not F, because K BF is not a factor,
thus it is D. But this shows that DC' BD is a factor of u, and this is impossible
since DC'BD € @G.

(iv) N = D. Here fa = BEAC. The possible factorizations are (§,a) =
(B,EAC), or = (BFE, AC), in which case M = A, and (f,a) = (BEA,C), in
which case M = Aor M = B and P = F.

Assume first that M = A, whence u = AsDsP. The first letter of s is (', and
the last letter of s is B. Thus s has length at least 2. The second to last letter of
s is either C' or F. It cannot be (' since otherwise u contains the factor CBDC'.
Thus s ends with £ B, and this implies that P = D, because FBFE is not a
factor. But then u contains a square, contradiction.

Assume now u = BsDsFE. This is impossible because there is no letter that can
follow both a B and a D in z.

(v) N = FE. Since pa = BEAC, the possible factorizations are (f,a) =
(BE,AE) or = (BEA,FE) and both lead to M = C and P = D. Thus
uw=CsFsD. Since D is preceded only by B, the last letter of s is B. Since (' is
only followed by B, the first letter of s is B. Thus » contains the factor BEB,
a contradiction.

The proof is complete. "

For the characterization of words of type (II), there remains to prove that if y
is an infinite word in Y, then h(y) is in 7. For this, we need a lemma.

LEMMA 5.5. (Satz 25) A word y in Y has no factor of the form wAwC, DwAw,
wEwD, CwEw, wDw, wCw, wBw, with w a nonempty word.'”

Proof. We argue by induction on the length of w, and show that if a word y in
Y has a factor wAwC', then there is a word y’ in Y that has a factor DvAv with
v shorter than w. The other proofs are similar.

Assume there is a word y in Y that has a factor wAwC with w # ¢. Then w
ends with a D, and since AD is not a factor, w = wyD with wy # e. Since
DA can only be followed by the letter F, the word wy starts with £; thus
wy = Fw,, and wy # ¢ because ED is not a factor. Now the letter preceding

17"The factor wBw is added here by the translator. It is implicit in the proof of the next
Satz.
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D in wAwC = FwyDAFw,DC is B, whence wy = wsB. If wsg = ¢, then
wAwC = FBDAFBDC, and there is no letter that can precede this word in y.
If ws # ¢, we observe that the letter preceding the leftmost £ cannot be A since
this gives a square, and therefore is a B. Moreover, this initial BFE can only be
followed by A. Thus ws = Aw, for some wy, and we get a factor

BwAwC = BEAwsBDAFEAwysBDC

Now, recall that U = w(Y) = {4", B, C'", D', E'}. The decomposition shows
that wy starts with the letter ', and since C BDC' is not a factor, wy # C', so
that

BwAwC = D'w' A'w' B’
for some w’ in U*, and w’ # ¢. Thus v’ = w(v) for some v, and DvAv is a factor
of some word in V.

The argument is similar in the other cases, and wel® only give the basic steps.
Assume that y contains a factor DwAw for some nonempty word w. Then it
contains also the following factors:

DCwlACwl
DCBUJQACBUJQ
DCBwsEACBwsEB

This shows that y contains a factor of the form B'w’A’w'C’, for some w’ € U*.
Thus some word in Y contains a factor of the form BvAvC', and since BA is not
a factor, v # e.

Assume now that y contains a factor
CwlFw

for some nonempty word w. Then it contains also the following factors.

CBleBwl
CBUJQAEBUJQA

This shows that y contains a factor of the form w'E'w’D’, for some w’' € U*.
Thus some word in Y contains a factor of the form vEv D, and since £ D is not
a factor, v # e.

Symmetrically, assume that y contains a factor

wlwD

18 and Axel Thue
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for some nonempty word w. Then it contains also the following factors:

wlBEwlBD
AwgBEAwgBD
BDAw,BE Aw, BD

This shows that y contains a factor of the form C’'w’E’w’, for some w' € U*.
Thus some word in Y contains a factor of the form C'vFwv, and since C'F is not
a factor, v # e.

Assume now that y contains a factor
wDw

for some nonempty word w. Then it contains also the following factors.

wlBleBE
UJQCBDUJQCBE
FPARw C BDAFwCBE

This shows that y contains a factor of the form E'w’'C’w’, for some nonempty
w' € U*. Thus some word in Y contains a factor of the form EvCwv, for some

v#e.

Assume next that y contains a factor
wCw

for some nonempty word w. Then it contains also the following factors.

EBwlCBwl
EBDUJQCBDUJQ
EBDwsACBDwsAE

This shows that y contains a factor of the form w’D’w’E’, for some nonempty
w’ € U*. Thus some word in Y contains a factor of the form vDvF, for some

v#e.

Assume finally that y contains a factor
wBw

for some nonempty word w. Then it contains also the following factors.

leBleA
DszBDngA

and since a letter D can only be preceded by a B, the word y contains a square,
contradiction. The proof is complete. "
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THEOREM 5.6. (Satz 26) For all y € Y, the word h(y) is in T .

Proof. Let y € Y. It is easily seen that the word t = h(y) has no factors of the
form
L2, YU, 2Y, UL, TYT, Yyry, ruy, Y=

(the last because C'E is not a factor of y). It remains to show t has no factors
of the form
WTWZ, WYWU, ZWYW, UYWL W

for w # ¢, and that it is square-free.

Recall that the set Z = {zuyzu, zu, zuy, zzu, zzy} = h(Y) is a suffix code, and
since every word in Z starts with the letter z, it has deciphering delay 1.

Assume first that t contains a factor
WrwWwz
for some nonempty word w. Then it contains
wyyrwIYz

because the only letter in 7" that can precede both x and z is y. Inspection of
7 shows that the factor ya appears only in zuyzu = h(A). Thus wy starts with
u, and t contains the factor

UWYTUWY 2

Moreover, wy is nonempty because zu is only followed by z. Thus t contains
wwsh(A)wsh(C)z

where w3 = h(W) for some word W € Y*. If W # ¢, this contradicts the
preceding lemma, and if W = ¢, the word t contains wh(AC'), which implies
that y contains AAC, BAC or DAC'. All these cases are impossible.

Assume now that t contains a factor
WYWU
for some nonempty word w. Then it contains
WITYWLTU

with wy # ¢, and also
ZWRTYZWTU

and w # ¢ since otherwise t contains a factor h(#£ D). By inspecting Z, one sees
that a factor zy is preceded by a z. Thus t contains a factor

ZW3ZTYZWIZTU



2.9, Decond Lase ! avba and aca are missing

Thus zws = (W) for some nonempty word W € Y*, and WEW D is a factor
of y, contradiction.

Assume next that t contains a factor
q = zwyw
for some nonempty word w. Then it contains
Zrwy Yrwy

with wy # ¢ because xzyz is not a factor. But wy starts with u, and zzw; ends
with zu. Thus wy = wwszu for some woy, and the factor ¢ is

zruwgzuyruwezu = (DWAWN)

for some word W € Y* and some letter N € {A, B,C'}. In view of the lemma,
W = e. But y is square-free and has neither AB nor DAC as a factor. Contra-
diction.

Assume next that t contains a factor
¢ — uwrw
for some nonempty word w. Then it contains
UYW1 T YW
and wy ends with a letter 2. Thus
(= UYWZXYWaZ

showing that t contains a factor CWEW for some word W € Y*, which is
impossible.

We now prove that t is square-free, arguing by contradiction. Assume that ww
is a square factor of t. Clearly, w contains at least one occurrence of the letter z.
In fact, it contains two occurrences of z, since otherwise ww would be a factor of
a word of the form h(s), where s € Y* has length 3. Now, the factors of length
3of y are

ACB,AEA,AEB,BDA, BDC, BEA,CBD,CBE,
DAE,DCB,EAC, EAE, EBD

and their images are all easily checked to be square-free.

It follows that, as in the proof of Satz 24, there is a factorization

w = atf



dnue’s second raper

and words 7, 6 where
t=h(s), seY™, s#e,
fa=h(N), ya=h(M), 36 = h(P), M,N,PeY
and

ywwd = h(MsNsP)

Of course M # N # P. If § = ¢ then as above M = N because Z is a suffix
code. Next, we observe that, by the lemma, the letter N is neither B, C', nor
D. If @ = ¢, then h(N) is a prefix of h(P), and this would imply that N is B or
C' which just was ruled out. Let us consider the remaining cases.

(i) N = A. The pa = zuyzu, and the only possibility is in fact (8,7) =
(zuy,zu). This implies that M = D, in contradiction with the fact that y has
no factor of the form DsAs.

(iil) N = E. Either (8,a) = (z,uy) and M = F or (§,a) = (zu,y) and P = D.
The first case yields a square, and the second contradicts the lemma. "

3.6 Third Case : aba and bab are missing

15.— We shall call a word over a, b, ¢ that both is square-free and has no factor
of the form aba and bab a word of type (111).

In this case, we obtain the ramification:

Figure No. 10

As in the second case, we consider an alphabet T' = {z,y, z,u}, a set of words

F over T defined by

F =A{wawz, wywu, zwyz, uvwzw | w € T} U {ayz, yry, zuy, yza }
and we denote by 7 the set of twosided infinite words over T' that are square-free
and that have no factor in F.

Here, we introduce a morphism g from 7™ into {a,b, ¢}* defined by

T — ca
Yy — cb
z — cab
u — cha
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In view of the ramification given above, every word x of type (III) admits a
unique inverse image by g: i. e. there is a unique infinite word t over T such
that ¢g(t) = x. We observe the following

Facr. Ifx = g(t) is of type (III), then t is in 7.

Proof. 1t suffices to show that t is square-free (this is clear) and that it has no
factor in the set . And indeed, since ¢g(2) = ¢g(2)b and g(u) = g(y)a, the words
g(wazwz) and g(wywu) contain squares. Next,

g(zwyw)e = cabg(w)cbg(w)e
gluwzw)c = cbag(w)cag(w)c
g(zyz)ch = cacbeach
g(yxy)ca = cbeacbea
g(yzz) = cbeabea
g(zuy) = cacbacb

This proves the claim. "

Recall that, for infinite words of type (II), we considered above (page 45) the
morphism f from 7% into {a, b, c}* defined by

x — abc
y — acbh
z — abcb
u — acbce

In view of Satz 22, we obtain directly:

THEOREM 6.1. (Satz 27) If x is a word of type (1), then f(g~'(x)) is a word
of type (1I). n

The converse also holds. For the proof, we give an alternative construction.
Introduce a new morphism f from 7™ into {a, b, c}* defined by

x — cba
y — cab

Y

2z — cbab
u — caba

obtained from f by exchanging the letters @ and ¢. Then for y of type (II) (i.e.
without factors c¢be and cac), the word

x = g(f7(y))

is obtained from y by deleting each letter that follows immediately an occurrence
of ciny.



dnue’s second raper

THEOREM 6.2. (Satz 28) If'y is a word of type (Il), (i. e. is square-free and
without factors cbe and cac), then g( f~1(y)) is a word of type (III).

Proof. Set x = g(f~(y)). It is straighforward that x has no factor of the form
aba and bab. Assume that x contains a square ww. Clearly, w contains at least
one occurrence of the letter ¢. Setting X = {ca, cb, cab, cba}, we may decompose

w = yvef

with v € X* and v, € {a,b}*. Then

ww = yvefyve

and ¢fy € X. If § # ¢, we may assume that 3 starts with the letter b. Then
there is in y a factor

yucafyuca

with « mapping on ». But this factor contains a square, contradiction. Thus
B = e. Again, we may assume that v starts with b, so v = b or v = ba. Then

ww = bvcbve or ww = bavcbave
Thus y contains a factor of the form
bucabuc or abaucabauc

with © mapping on ». In the second case, we obtain a square. In the first case,
the initial letter is preceded, in y, by the letter a, so again there is a square.
This completes the proof. "

16.— Finally, we observe:

THEOREM 6.3. (Satz 29) Let
X = 2ol """

be an infinite square-free word over three letters. Then there exists a factoriza-
tion
X = uy

such that y has no prefix of the form waw, where a is a letter and w is a
nonempty word.

For the proof, it will be convenient to set x; = x;2;41 - - - for ¢ > 0. We argue by
contradiction, and assume that any x; admits a prefix of the form waw, with a
a letter and w a nonempty word.
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LEMMA 6.4. Let w be a nonempty factor of X1, and let a be a letter such that
au is not a factorof x. If
uz = wdwy

is a factor of x for some words z, w # ¢, y and some letter d, then d = a and
[w] < ful.

Proof. Let ¢ be the first letter of w. Since w is a factor of xq, there is a letter b
such that bu is a factor of x, and b # ¢, b # a. By assumption

buz = bwdwy.

Since x is square-free, d # b, and since u (hence w) starts with the letter ¢, one
has d # ¢. Thus d = a. Next, if |w| > |u|, then dw starts with au and au is a
factor of x, a contradiction. "

The proof of the theorem is by repeated application of the lemma. We first prove
that a specific word cannot be a factor, and then, slicing the initial letters, reduce
this word to a short word that must appear in x.

(i) The word u = abcacbabea is not a factor of x3.

Indeed, observe first that u = vebv with v = abca. Thus cbu is not a factor of
x. This implies that bu is not a factor of x| because bu can be preceded neither
by @ nor by b. Since u is a factor and bu is not, the assumptions of the theorem
and the lemma show that there are words z, w # ¢, y such that

uz = whwy

Since u has 3 occurrences of the letter b and |w| < |u|, one has w = a, w = abeac,
or w = abcacba. The first and the last case are immediately ruled out. In the
second case, wbw = uc = vcbve, and since this factor is always followed by a b,
this also is impossible.

(i) Set uy = cacbabea (i.e. w = abuy). Then uqb is not a factor of x4.

We show that buqb is not a factor of x3. The result follows because any occur-
rence of uqy is preceded by a b. Assume buqb is a factor. Since abuib is not a
factor, we may apply the lemma. A factorization

burbz = wawy

with |w| < |buyb| implies w = beacbabe (the two other cases are clearly impossi-
ble). But then waw contains the square abcabe.

(iii) Set ug = acbabca (i.e. uy = cuy). Then uzb is not a factor of xs.
Indeed, since cusb is not a factor, the equation

Uuobz = wewy

implies w = a or w = acbab, and both are impossible.
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(iv) Set us = cbabca (i.e. uy = aus.) Then usb is not a factor of xg.
Indeed, since auszb is not a factor, we obtain the equation usbz = wawy with
|w| < |usb| which clearly is impossible.

(v) Set uq = babca (i.e. us = cuy.) Then ugb is not a factor of xz.
Indeed, otherwise we get the equation usbz = wewy, whence w = bab, a contra-
diction.

(vi) Set us = abca (i.e. uy = bus.) Then usb is not a factor of xs.
Indeed, otherwise we get the equation usbz = wbwy, whence w = a, a contra-
diction.

(vii) Set ug = bca (i.e. us = aug.) Then ugh is not a factor of xg.
Indeed, otherwise we get the equation ughz = wawy, whence w = bec, a contra-
diction.

(viii) Set ur = ca (i.e. ug = bur.) Then uzb is not a factor of x1o.
Indeed, otherwise we get the equation uwrbz = wbw which has no solution.

Thus, we have shown that cab is not a factor of x15. But we have seen earlier that
every square-free word of length at least 31 over three letters contains any factor
of length 3 compose of the three letters. This leads to the desired contradiction
and proves the theorem.

3.7 Irreducible words over four letters

17.— According to our general definition, a word w over a four letter alphabet
is called irreducible if any two distinct occurrences of a same factor in w are
separated by at least two letters. For simplicity, we consider here only twosided
infinite words.

Let A = {a,b,c,d} be a four-letter alphabet, and let B = {z,y, z,u,v,w} be a
six-letter alphabet. Consider a morphism f: A* — B* defined by

z — abead
y +— acbad
z — bachd
u — beabd
v — cabed
w — chacd

The set X = {f(), f(y), f(2), f(u), f(v), f(w)} is a comma-free code, because
the letter d occurs only at the end of each codeword. Moreover, the code has
another interesting property'®. A word a is called a characteristic prefix of
x € X if a is a prefix of  and if no other codeword in X has a as a prefix.

19Gee also earlier.
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A symmetric definition holds for characteristic suffixes. The code X has the
property that, for any z € X and any factorization @ = ahf3, with h € A, either
a or [ is characteristic for z.

Set
H = {2z, 2w, yu, yv, 22, 20, 0y, ww, vy, VZ, WT, WU

and

H=[f(H)={f(h)|he H}
Write the letters of the alphabet on the vertices of a polygon as follows:
C)

x

Then the set H is composed of pairs of adjacent letters. 1t is easily verified that
all words in H are irreducible.

THEOREM 7.1. (Satz 30) Let x be a twosided infinite word over B such that all
its factors of length 2 are in ‘H. If x is square-free, then f(x) is irreducible.

Proof. Assume that the word y = f(x) is reducible. Then y contains a factor
tkt, where |k| < 1. Assume first that ¢ has a factor that is in the code X.
Then there are words «, f and s € X*, s # ¢ such that ¢t = 3sa, and moreover
akB € X, i.e. setting ¢ = akg,

tht = Psakfsa = (sqsa.

Since a or (3 is characteristic for ¢, either the prefix # of tkt is the suffix of an
occurrence of ¢, or the suffix « of tkt is the prefix of an occurrence of ¢. Thus,
either gsqs or sqsq is a factor if y and x contains a square.

Since tkt is not a factor of a word of ‘H, it remains to consider the case where
tkt is a factor of some word ¢1q2¢3 in X°. As before, one has akf3 = ¢, for some
words o and 3, and t = fa. Thus ¢4 = v and ¢35 = aé, and since a or 3 is
characteristic for ¢, it follows that ¢ = ¢2 or ¢o = ¢3. This is impossible and
proves the theorem. "

We now show how to construct twosided infinite words of the kind described in
the theorem, i.e. that are square-free and have all their factors of length two in
the set H. We shall see that even five letters are sufficient. It is immediately
seen that at least five letters are required.



dnue’s second raper

Assume that the letter w does not appear in a twosided infinite word x that both
is square-free and has all its factors of length two in the set H. Then, in following
the cycle in the picture, one sees that any two consecutive occurrences of the
letter y are separated by u, v, vzv or vzaxzv. Thus x is a product of the words yu,
yv, yvzv and yvzezv. In fact, x cannot contain the factor yvy, since otherwise it
would also contain vyuyvyuy which is a square. Thus, x is a product of the three
words yu, yvzv and yvzaezv. Define a morphism o : {a,b,¢}* — {z,y,2z,u,v}*
by

a— yu

o b yvzv
¢ YvITZv

The word x has no factor of the form o(aba) or o(cbe), since
o(cabac) = yvzaz(vyuyvz)(vyuyvz)rzv

and
o(cbe) = yvza(zvyv)(zvyv)zazv

both contain squares.

THEOREM 7.2. (Satz 31) Let z be a twosided infinite word over a, b, ¢ that is
square-free and has no factor aba and cbc*®. Then o(z) is a square-free word
with all its factors of length 2 in the set H.

This of course implies that f(o(z)) is irreducible for every infinite word z of type
(.

Proof. Set 'y = o(z). By construction, the factors of length two of y are all in
H. It remains to show that y is square-free. It is easily checked that the image,
by o, of any factor of length 3 of z is square-free. Thus, if y contains a square
tt, then the shortest factor p of z such that ¢t is a factor of o(p) has length at
least 4. Thus, there are letters M, N, P in {a,b,c}, a word s € {a,b,c}* and
words a, 3, v, 6 in {z,y, z,u,v}* such that

o(M)=~pB, o(N)=af, o(P)=ab, t = fo(s)a

and
yttd = o(MsNsP)

20Tt is of type (I).
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‘ v ‘ o(s) ‘aﬁ ‘ o(s) ‘ ab ‘
| ! | !

If N =aor N = c, then either a or § is characteristic for N. Indeed, if N = a,
then either « or 4 contains the letter u which appears nowhere else in the words
{o(a),o(b),o(c)}. In the second case, the same holds with the letter . In
these cases, N = M or N = P and z contains a square. Thus N = b, whence
af = yvzv. If @ or B is empty, the word x contains a square. If a = g, then
M = b, again impossible. In the two remaining cases, a square is avoided only if
M = P = c¢. Thus x contains the factor c¢sbse. This implies that s is not empty,
and that it starts and ends with the letter a. But this in turn shows that aba is

a factor of x. This proves the claim. "

Similar arguments show how to construct arbitrarily long circular words which
are irreducible.

3.8 Irreducible words over more than four letters

We show here how to contruct, for any integer n > 4, arbitrarily long words over
an alphabet with n letters such that any two occurrences of a same factor are
separated by at least n — 2 symbols.

We consider first the case where n is even, and set n = 2h. We consider an alpha-
bet {ay,as,...a,}. Our purpose is to build a morphism that maps a square-free
word over three letters into an irreducible word over {ay, as, ...a,}. For this, we
construct three sequences of words of special form. First, consider a sequence
U = Ug, U1, - .., up of words of length n + 1 defined by

U = Uy = 142 - dp_10a0104y
obtained by inserting the letter ay in ay - - -a, between a,,_; and a,. Next
up = o(Up—1) 1<k<h

where ¢ is the permutation defined by?!

a; if 7 is even
o(a;) = e
Gi+2modn if ¢is odd
Thus
Uuo = Q1020304405 * * - Up_1A10p
Uy = Q302050407 - - - 41030y
(%) = Q502070409 * - - 43050y

Up—1 = Gp—1G2010403 * * - Gp_30p_10p
up, = U

2! We write improperly § mod n for 1+ (5 — 1 mod n).
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We first prove that uguq is irreducible. This implies that every word wugugyq
(0 < k < h) is irreducible over {aq,az,...a,}. Any factor of length at least 2
has only one occurrence in uguy. Indeed, this is clear for the factors a,,_1a1 and
aias. All other factors of length two contain a letter with even index which is
preceded or followed by a different letter of index in its two occurrences. Next,
two occurrences of the same letter are separated by at least n — 2 letters.

Set

P = Uoly - Up—1
This is the first word we are looking for. The words p and pu are irreducible.
Indeed, the same argument as before shows that only letters have more than one

occurrence in p, and occurrences of the same factor of length greater than 1 in
pu = wuq - - - up—1u are separated by at least (h — 1)(h + 1) letters.

A second sequence vg,v1,...,0, 0p4+1 Of words of length n + 1 is defined by
vo = u and
v = T(vk—1) 1<k<h

where 7 is the permutation given by

T(a1) = ag
T(az) = as
_ fa; if ¢ is even, ¢ > 2
(@) =\ s mean i s odd, i > 1
Thus
Vg = A10G2G30405 - Up_10G10y
m = A2a30a5A4Q7 - A1020y
V2 = 43050704049 * - - Q20305
V3 = 450470904477 * * - Q30505

Vp—1 = Upn-30np-1010402 * * *yp_50y_30yp

Vp = 0p-101020403 " Up_30510y

Vp41 = U
Observe that v, and wp_; are obtained one from each other by exchanging a4
and ay. Next, voovy is irreducible. Indeed, two occurrences of the same letter are
separated by at least n — 2 letters, and the only two factors of length in wvgvq,
namely aqas and aqa; are separated by words of length n — 2 and 2n — 3. Thus
vov1 and consequently all vivryq for 0 < k < h are irreducible.

Our second word is
q = Yoty

This word is also irreducible. Assume indeed that ¢ contains two distinct oc-
currences of the same factor. If this factor has length greater than 3, then it
contains one of the letters a4, aq,...,a,. But two occurrences of these letters
are never followed or preceded by the same letter. Thus, the factor has length
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at most 3, and contains none of a4, a,...,a,. Two occurrences of this type are
easily checked to be separated by a word of length at least n — 2.

Finally, we consider the word
T = Wow1Wg * - - Wh—1

where each wy is obtained from ujp by exchanging ay and a,. Since p is irre-
ducible, sois r. Moreover, one has vy, = wp—1 and wp_1u = vy is irreducible.
It is convenient to write v = vy,.

Define a morphism A : {a,b,c}* — {ay,...,a,}* by

A= P =uly - -Up1
f i b—qg=uvy - -vp_1v
CrH— T =Wy -WhHL_2V

Then the following result holds

THEOREM 8.1. (Satz 32) For every twosided infinite square-free word x over
{a,b,c}, the word f(x) is irreducible.

Proof. We observe first that the words up_qug, up_1wo, vpug, vawg are irre-
ducible. Thus, in the word y = f(x), a reducible factor is not contained in the
product of two of the u;’s, v;’s, w;’s. Denote by 5 the set

S =AU, e UR—1s VLo e ey Dy WOy« e oy W1}

This set is a uniform code. The fact that every codeword ends with the letter z,,
shows that § is a comma-free code. Moreover, every codeword is characterized
by its prefix of length 3.

Similarly, the set X = {p,q¢,r} is a comma-free code. Moreover, in any factor-
ization af of a word in # € X either a or 3 is characteristic for . We finally
observe that if ss’, with s,s’ € 5 is a factor of some word xa’, with z,2’ € X,
then s # s’ and even s and s’ have different suffixes of length 2. These suffixes
are of the form aa, and a’a, for two letters a, o’ in {ay,...a,}. If ss’is a factor
of p, g or r, then a # a’. Otherwise ¢ = ay or @ = a3 and @’ = a,,_1. This proves
the claim.

Assume now that y is reducible. Thus y contains a factor tgt with |g| < n — 3.
First observe that we can assume equality, i.e. that |g| = n — 3. Indeed, if
lg| < n — 3, then ¢ is not a letter, and thus, setting ¢t = t'a and ¢’ = ag, with a
a letter, one gets the reducible factor #'¢’t’ with a longer central word ¢’. The
claim follows by induction on |g|.

We already mentioned that tgt cannot be contained in a factor of y which is a
product of two words in 5.
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If tgt is contained in a factor of y which is a product sysgs3 of three words in
S, then t contains an occurrence of the letter z,,, and consequently

518983 = YPagpad

with t = fa, 81 = 703, s2 = agf3, s3 = ab. Note that |af| = 4. Since s1 # 3o,
one has |a| < 2, whence |§| > 2. But we have seen that two consecutive words
in 5 cannot have the same suffix of length 2.

If tgt is contained in a factor of y which is a product sys25354 of 4 words in 5,
then there are words «, 3, v, 8, o/, ' such that t = fa, g = §'a’, and s1 = 13,
sy =aff, s3=0ad'83, s4 = ad.

S1 52 S3 S4

| B a |[§d] B a |
t g t

Since n+ 1 = |a| 4+ |f'| < |a|+ n — 3, one has |a| > 3, which implies s = s54.
But this is impossible in a word in X™*.

Thus tgt is contained in a factor of length greater that 4, and this means that
t = sy s, for words s1,...,8,, € 5. Let v and ¢ be such that v3, aé are
in 5. As before, there are two cases, namely either ¢ is contained in some s, or
g is overlapping over two s € 5. In the first case

Yigtd = yBs1 - - SpagPsy - Spab

with agf € 5, and in the second case,
yigtd = vB3s1 - -spafa’Bsy - s, 06

with af’, o’/ € 5, and g = f'a’.

Consider the first case. The word yf3sy---syagf8s1 -+ S, is a product of
words in X = {p,q,7}. The word x in X in this product containing agfs does
not contain two equal words in 5. Thus

x:sj...smagﬁsl...si

with ¢ < j. If ¢ > 1, then sq - - - s; is characteristic for z, and 73 = agp. If 7 < m,
then s;---s, determines x and agf3 = aé. In both cases, we get a square. If
1 < 1and j > m,then z = s,,ag@sy. This implies also that m > 1. Next, s, ad
is a suffix of a word y in X and vf3s; is a prefix of a word zin X. If y = 2z or
z = z, we get a square. Thus the only remaining possibility is, because & and
y share the same prefix s,,, = u, and = and z share the same suffix s; = v, that
z=r,2 =q,and y = p. However ¢ is formed of at least 4 words in 5 and =z
contains only 3. Contradiction.
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The second case is very similar. Consider the word

vB381 - spafa’Bsy s, ad.

Then n+ 1 = |af'| < |a|+ |g| = |@| + n — 3, whence |a] > 4. Thus af’ = aé.
Setting s,,4+1 = ad, this yields

!
7ﬁ51 e SmSm1 ﬁsl o SmSm41

The rest of the proof is as before. "

THEOREM 8.2. (Satz 33) If every letter a, is erased in a word f(x) of the
kind described in the previous theorem, the resulting word is irreducible over

{al, .. .,an_l}.

Proof. Denote by 7 the projection of {ay,...,a,}" onto {ay,...,a,_1}*, and let
y = f(x),y" = 7(y). Let tgt be a reducible factor of y’. Observe first that
|tgt| > n — 1. Indeed, ¢ contains a letter different from a,,, and two occurrences
of this letter are separated by at least n — 3 letters. Next, by arguing like in
the preceding proof, we may assume that |g| = n — 4. This in fact implies that
ltgt] > n.

The word ¢ contains at least one ocurrence of the letter a,_5. Indeed, two
consecutive occurrences of a,_o in y’' are always separated by exactly n — 1
letters, and if the claim is wrong, then [tgt| < n — 1.

Let w, £ and w’ be words such that wlw’ is a factor of y and 7(wlw’) = tgt, and
m(w) = m(w') =t, 7({) = g. There may be several choices for these words, and
we choose w and w’ of maximal length (i.e. including bordering a,’s). Since
the letter a,,_5 occurs always at the same place in words in 5, namely at the
forth position from the right, the equality m(w) = w(w’) implies that w = w’.
Moreover, £ contains at most one occurrence of the letter a,. This proves the
result. "

These theorems show that, as claimed above, there exist infinite irreducible
words over n letters for all n > 4.



Chapter 4

Notes

In this chapter are grouped several notes and comments about theorems in
Thue’s papers. They mainly concern further results and later developments.

4.1 Square-free morphisms

All morphisms considered are supposed nonerasing. A morphism h : A* — B* is
square-free if it preserves square-free words, that is if h(w) is square-free for all
square-free words w € A*. As we shall see, the square-freeness of a morphism is
decidable in general. Several conditions on a morphism ensure that it is square-
free, and are easy to check. First, observe that one always can assume that & is
injective on the alphabet, since if h(a) = h(b) for a # b, then h(ab) is a square.

We introduce some definitions on sets of words or on codes. These have a natural
extension to morphisms: a morphism h : A* — B* is said to have a property P
if the set h(A) has this property.

Let X be a set of words. A word p is a recognizing prefiz for X (Thue says
characteristic) if p is the prefix of one and only one word in X. Recognizing
suffizes are defined symmetrically. As an example, a set X is a prefix code iff
every x € X is a recognizing prefix for X.

A set X is a recognizing code (Goraltik, Vani¢ek) or a ps-code (Kerdnen) if, for
all x € X and for every factorization x = ps, either p or s is recognizing. More
formally, this condition can be expressed as:

ps,ps’psc X =p=p ors=3s

As a consequence, the following fact is easily shown.

FacT. A recognizing code is biprefix.



4.1. Jquare-iree morphnisms

A pip (or recognizing factor) for X is a word p that is a factor of exactly one
word z in X and that, moreover, has only one occurrence in . A Melnicuk code
is a set X such that every word = in X has at least one pip.

FacTt. A Melnicuk code is infix.
(A set X is infiz if no word in X is a proper factor of another word in X.)

A word p is a synchronizing prefix (suffix) for X if upv € X T implies v € X*
(v € X*). A code is synchronizing if, for all € X and for every factorization
x = ps, either p or s is synchronizing. A code X is bissective if it is both
recognizing and synchronizing.

FacT. A bissective code is comma-1ree.

We now can state several results about morphisms that imply square-freeness.
The first two are basically those of Thue. (Satz 17. Indeed, the restriction on
the size of the alphabets is not relevant, see also Bean, Ehrenfeucht, McNulty.)

Let h: A* — B* be a morphism.

ProposiTioN 1.1. If h is infix and preserves square-free words of length 2, then
h is comma-{ree.

ProposiTiON 1.2. If h is comma-free and preserves square-free words of length
3, then h is square-free.

An immediate corollary is:

CorOLLARY 1.3. If h is a uniform morphism (i.e. |h(a)| = |h(b)| for a,b € A),
and if h preserves square-free words of length 3, then h is square-free.

ProrosITION 1.4. Ifh is a bissective morphism that preserves square-free words
of length 2, then h is square-free.

This result is due to Goral¢ik and Vani¢ek. As a (negative) example, consider
the morphism ¢ : {a,b, c}* — {a,b, c,d}* defined by

a— ab
g:bwcb
c— cd

given by Brandenburg. This morphism is uniform, thus infix. It preserves
square-free words of length 2. It is also easily checked to be comma-free and to
be synchronizing. However, g is not recognizing since in h(b) = c¢b, neither ¢ nor
b is recognizing, and ¢ is not square-free since g(abc) contains a square.
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There is a general criterion on morphisms that ensures square-freeness due to
Crochemore. Define an integer K'(h) as follows. Set

M(h) = max{|h(a)| | a« € A}, m(h) = min{|h(a)| | a € A}.

K(h) = max (3, 1+ [M-‘)

Then

Then one has:

THEOREM 1.5. If h preserves square-free words of length K (h), then h is square-
free.

The next two observations make it possible to build square-free morphisms
over arbitrary alphabets. Examples are given in Bean, Ehrenfeucht, McNulty,
Crochemore and Brandenburg (who introduced the parallel composition).

Fact. The composition of two square-free morphisms is again square-free.

Sometimes, the parallel composition hy X hy of morphisms may be useful. It is
defined as follows. Let hy : A} — B] and hy : A5 — BJ be two morphisms,
where A; N Ay = (). The parallel composition hy X hy : (A1 U A2)* — (B U B2)*
is defined by

- hl(a) if a € Al
ha < fafa) = {hg(a) ifae Ay

Fact. If BiNBy = () and if hy and hy are square-free, then hy X hy is square-free.

The most difficult task is to find a square-free morphism from a four-letter
alphabet into a three-letter alphabet. The example given by Bean, Ehrenfeucht,
MecNulty maps the letters into words of length greater than 200. Brandeburg
gives (implicitly) an example of a uniform morphism of length 44. The following
morphism is due to Crochemore and has length 20:

a — abcbacabeacbabeabach
F b — abcbacbecabacbabeache

¢ — abcbacbecacbabeabache
d — abcbacbecacbacabeacbhe

The word abcbac is a synchronizing prefix for h, and the suffixes of length 14
of the four words are synchronizing suffixes. Thus h is synchronizing. Next,
the prefixes of length 10 are recognizing, since they are distinct, and so are the
suffixes of length 8. Thus h is bissective, and it “suffices” to check that the
12 words of length 40 obtained as images of square-free words of length 2 are
square-free.
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4.2 Overlap-free words

What Thue actually shows, is that a word w over the two letter alphabet A =
{a, b} is overlap-free iff u(w) is overlap-free. Thue observes that the same result
holds for circular words. More precisely, he gives a complete characterization of
circular overlap-free words (Satz 13).

As a consequence of Satz 13, Thue characterizes overlap-free squares, a result
that was discovered later also by [45]. T. Harju [20] gives a result which is
similar, but different.

The property that the dynamical system generated by the (twosided) Thue-
Morse sequence is minimal was explicitly proved by Gottschalk and Hedlund
[17]. As a consequence, every factor appears with bounded gaps (is recurrent,
in the terminology of M. Morse [28]). Axel Thue (Satz 11) only mentions that
every factor appears infinitely many often.

Recall (Satz 16) that Thue characterizes all overlap-free morphisms by show-
ing basically that there is only one. This result has been completed by P.
Séébold [40], who shows that the Thue-Morse word is the only morphic overlap-
free word. Thus, the infinite words t and t are the only infinite overlap-free
words generated by iterated morphisms. There is now a simple proof of these
results by Berstel and Séébold [?]. They prove that for a morphism A to be
overlap-free, it suffices that h(abbabaab) is overlap-free..

The structure of onesided infinite overlap-free words is more complicated. An
explicit description of the tree of infinite overlap-free words by means of a finite
automaton was given by E. D. Fife and deserves a mention.

Fife defines three operators on words, say a, 3, v, and he shows that every
overlap-free infinite words is the “value” of some infinite word f in the three
operators, provided the word f is in some rational set he gives explicitely. To
be more precise, let X,, = {u,,v,} be the set of Morse blocs of index n and let
X = U,>0 Xn- Any word w € A*X; admits a canonical decomposition (z,y,7)
where 7 is the longest word in X such that w = zyy. It is equivalent to say
that (z,y,y) is the canonical decomposition of w if gy is not a suffix of z. As an
example, the canonical decomposition of aabaabbabaab is

(aaba, abba,baab)
and the decomposition of abaabbaababbaabbabaab is
(abaab, baababba, abbabaab)
The three functions a, 3,7 : A*X; — A* Xy, acting on the right, are defined as

follows for a word w € A* Xy with canonical decomposition (z,y,7):
w-a=zyy - a = 2Ygyyy = wyyy
w- B =zyy- = 2yyyyyy = wyyyy
Wy = 2YY -y = 2YYyy = wyy



{2 Notes

Since w is a prefix of w - a, w- 3, and of w - v, it makes sense to define w - f
by induction for all “words” f in B*, with B = {«, #,~7}. By continuity, w - f is
definde also for infinite words f. Here are some examples:

ab - o = abaab

ab - 3 = ababba
ab -~ = abba
ab-v¥ =1t

aab - o = aabaab = a(ab - a)

ab - afy = abaababbabaababbaabbabaab

Observe that the last word contains an overlap. Note also that, for w € A*X;
and f € B*, one has p(w- f) = plw) - f = w-~vf. A description of an infinite
word x starting with ab or aab is an infinite word f over B such that x = ab-f
or x = aab - f, according to x starts with ab or aab.

ProprosiTION 2.1. Every infinite overlap-free word starting with the letter a
admits a unique description.

Let
F=BY—-B"IB¥
be the (rational) set of infinite words over B having no factor in the set
I'={a, B}(y"){pe. 78, a7}
and let GG bet the set of words f such that gf is in F. Then:

THEOREM 2.2. (Fife’s Theorem) Let x be an infinite word over A = {a,b}.
(i) if x starts with ab, then x is overlap-free iff its description is in F;
(i7) if x starts with aab, then x is overlap-free iff its description is in G.

A direct consequence is the following

COROLLARY 2.3. An overlap-free word w is the prefix of an infinite overlap-free
word ifl w is a prefix of a word ab - f with f € W or of a word aab - f with
O6f €W, where W = B* — B*I B*.

This implies in particular a result of Restivo et Salemi [33], namely that it is
decidable whether an overlap-free word is extensible into an infinite overlap-free
word. Another consequence of Fife’s description is the following

COROLLARY 2.4. The Thue-Morse word t is the greatest infinite overlap-free
word, in lexicographical order, that start with the letter a.
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Indeed, the choice of the letters a, 3, et v implies that if £ </, then ab-f <
ab - f'. The greatest word in F is v*, and this shows the corollary. A. Carpi [9]
has developed a description for finite overlap-free words by means of a finite
automaton. Unfortunately, his automaton is rather big (more than 300 states).
J. Cassaigne [11], using a similar but different encoding, gets a much smaller
automaton

Since overlap-free words have a strong structure, it seems natural to count them.
The first result is due to Restivo and Salemi [33]. They prove that the number
vn of overlap-free words over two letters grows polynomially in n (in fact slower
than n*). Kobayashi [24] has used Fife’s theorem to derive the lower of the more
precise bounds for v, :

THEOREM 2.5. There are constants Cy and C'y such that
Clna < Yn < anﬁ

where o = 1.155... and = 1.5866. . ..

One might ask what is the “real” limit. In fact, a recent and surprising result
by J. Cassaigne [11] shows that there is no limit. More precisely, he gets exact
formulas for the number of overlap-free words, and setting

o =sup{r|3C >0,Yn,y, > Cn"}

and

B =sup{r | 3C > 0,VYn,7y, < Cn"}

he obtains:
THEOREM 2.6. One has 1.155 < o’ < 1.276 < 1.332 < 3/ < 1.587.

This is to be compared with the situation for square-free words. Indeed, Bran-
denburg [6] proved that for the number ¢(n) of square-free words of length n
over three letters, there are constants ¢; > 1.032 and ¢; < 1.38 such that
6cf < ¢(n) < 6¢5. Brandenburg also proves that the number of cube-free words
over two letters grows exponentially.

4.3 Avoidable patterns

The overlap-freeness of the Thue-Morse sequence, and the square-freeness of the
other words we have presented can be expressed in the more general framework of
avoidable and unavoidable patterns in strings. This concept has been introduced
in the context of equations defining algebras. Certain unavoidable words have
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been used e.g. in [38] to characterize those finite semigroups S that are inherently
nonfinitely based, in the sense that S5 is not a member of any locally finite
semigroup variety definable by finitely many equations. It may be noticed that
Axel Thue replaces his research on repetitions in strings in an even slightly more
general context, since he considers avoiding patterns with constants. However,
he has not stated results in this specific framework.

A word u is said to appear in a word v if there is a nonerasing morphism A such
that h(u) is a factor of v. Clearly, if v appears in v and if v appears in w, then
u appears in w. Thus, the relation of appearance is a quasi-order, and it is an
order if words are considered to be equal if they are the same up to a renaming
of letters.

Consider an alphabet F of “pattern symbols”. A word e over F is called a
pattern. A pattern e is avoidable over k letters, or is k-avoidable, if there is
an infinite word x over k letters such that e does not appear in x. The Thue-
Morse sequence shows that the patterns aaa and ababa are (simultaneously)
2-avoidable, and square-free infinite words show that aa is 3-avoidable (but not
2-avoidable). If u appears in v and if v is unavoidable, then u is unavoidable or,
equivalently, if v is avoidable, then u is avoidable. Avoidable and unavoidable
patterns have been studied by several people (Zimin [51], Schmidt [39], Bean,
Ehrenfeucht, McNulty [5], Roth [34], Cassaigne [10], Goralcik, Vanicek [18],
Baker, McNulty, Taylor [3], Crochemore, Goralcik [14]).

A first problem is to determine whether a given pattern is avoidable. There is a
nice algorithm in [5], and basically the same in [51], to decide whether a pattern
is avoidable. It works at follows.

Let w be a word for which one has to decide if it is avoidable, and let A =
alph(w). One constructs a bipartite graph G(w) whose vertex set is Ag U Ap,
where Ag and Ap are disjoint sets labelled with the letters in A. There is an
edge from ag to bp iff ab is a factor of w.

ExaMPLE. For w = abcba, the graph G(w) is given below.
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A subset B of A is called free for w if no connected component of G(w) contains
both a letter of Bg and a letter of Bp. In our example, the free subsets are {a},

{b}, {c} and {a,c}.

With these definitions, we are able to define a reduction relation as follows:
w — w' iff there exists a free subset B such that w' = erag(w), where erap
is the morphism that erases all letters in B and is the identity on the other
letters. The following result is due to [51], and Baker, McNulty, Taylor [3]. It
is contained in a slightly different form in Bean, Ehrenfeucht, McNulty [5].

THEOREM 3.1. A word w is unavoidable iff w —* ¢.

The complexity of this algorithm is at least exponential. P. Roth (personal
communication) recently has proved that the general problem is N P-complete.

There are several easy consequences of this characterization. Call a letter a in
w an isolated letter if |w|, = 1, i.e. if it occurs only once in w.
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COROLLARY 3.2. If w contains no isolated letter, then w is avoidable.

Indeed, if w — w’ and if w’ contains an isolated letter, then w contains an
isolated letter.

CoOROLLARY 3.3. Every word w of length |w| > 2™ over an n-letter alphabet is
avoidable.

Indeed, it is not very difficult to show that such a word contains a factor without
isolated letter. This bound is the best possible, because there exist unavoidable
words of length 2™ — 1 over an n-letter alphabet. This can be formulated as
follows. Let Z = {z,22,...,2p,...} be a countable infinite alphabet, and define
the Zimin words Z,, by

Zy = 21, Ln = an Zpip—1, T > 1

Thus Z4 = 71297123212221 747172717371 7271. LThen

ProprosITION 3.4. For every n > 1, the Zimin word Z, is unavoidable. More-
over, if w is an unavoidable pattern over an n-letter alphabet, then w appears
in Z,.

The first part of the proposition has been proved by Coudrain, Schiitzenberger
(see also Lothaire). Define a biideal sequence to be a sequence (w,),>1 of words
such that wy is nonempty and, for all n > 1, w,4+1 = w,v,w, for some nonempty
word v,. Then Coudrain and Schiitzenberger state that for any fixed n, every
long enough word contains an element w,, of some biideal sequence.

For an avoidable pattern e, denote by u(e) the smallest integer &k such that e is
k-avoidable. We have seen that p(aa) = 3. The first word that is 4-avoidable
but not 3-avoidable has been given by [3]. It has the form ababecfcavybabac.
It is not known if, for every n, there exists a pattern that is n + 1 avoidable
but not n-avoidable. Upper bounds for p, as a function of a are also given
in [3]. Recently, Roth [34], Cassaigne [10], Goralcik, Vanicek [18] have solved
the problem of determining all the 2-avoidable binary patterns. There is an
unpublished result by Melni¢uk that states that u(e) < alph(e) + 4.



[1]

[13]

Bibliography

A. ADLER, S. L1, Magic cubes and Prouhet sequences, American Math.
Monthly 84 (1977), 618-627.

J.-P. ALLoucHE, Automates finis en théorie des nombres, Exposition.
Math. 5 (1987), 239-266.

K. A. BakEr, G. F. McNurTy, W. TAYLOR, Growth problems for avoid-
able words, Theoret. Comput. Sci. 69 (1989), 319-345.

L. Baum, M. SweeT, Continued fractions of algebraic power series in
characteristic 2, Ann. Math. 103 (1976), 593-610.

D. R. BEAN, A. EHRENFEUCHT, G. F. McNuLTY, Avoidable patterns in
strings of symbols, Pacific J. of Math. 85 (1979), 261-294.

F. J. BRANDENBURG, Uniformely growing k-th powerfree homomorphisms,
Theoret. Comput. Sci. 23 (1983), 69-82.

S. BRLEK, Enumeration of factors in the Thue-Morse word, Discr. Appl.
Math. 24, (1989), 83-96.

A. CARrPI, On the size of a squarefree morphism on a three letter alphabet,
Inform. Proc. Letters 16 (1983), 231-236.

A. Carpi, Overlap-free words and finite automata, manuscrit, 1990.
J. CassaieNE, Unavoidable binary patterns, Acta Informatica, to appear.

J. CassalGNE, Counting overlap-free binary words, manuscrit Ecole nor-
male supérieure, Paris, 1992.

G. CuristorL, T. KaMArE, M. MENDES FRANCE, G. RAUzZY, Suites
algébriques, automatset substitutions, Bull. Soc. Math. France 108 (1980),
401-419.

A. CoBHAM, Uniform tag sequences, Math. Systems Theory 6 (1972),
164-192.



(Ko DIDLIVGRANITY

[14] M. CrROCHEMORE, P. GoraLcik, Mutually avoiding ternary words of
small exponents, Intern. J. Algebra Comput.1 (1991), 407-410.

[15] F. DEJEAN, Sur un théoreme de Thue, J. Combin. Th. A 13 (1972), 90-99.

[16] E. D. FIrE, Binary sequences which contain no BBb, Trans. Amer. Math.
Soc. 261 (1980), 115-136.

[17] W.H. GorrscHALK, G.A. HEDLUND, A characterization of the Morse
minimal set, Proc. Amer. Math. Soc. 15 (1964), 70-74.

[18] P. GoraLcik, T. VANICEK, Binary patterns in binary words, Intern. J.
Algebra Comput.1 (1991), 387-391.

[19] M. HALL, Generators and relations in groups — the Burnside problem, in
T. L. Saaty (ed) Lectures on Modern Mathematics 2, Wiley, 1964, 42-92.

[20] T. HarJu, On cyclically overlap-free words in binary alphabets, The Book
of L, Springer-Verlag, 1986, 123-130.

[21] G.A. HEDLUND, Remarks on the work of Axel Thue, Nordisk Mat. Tidskr.
15 (1967), 148-150.

[22] V. KERANEN, On k-repetition free words generated by length uniform mor-
phisms over a binary alphabet, Lect. Notes Comp. Sci. 194, 1985, 338-347.

[23] V. KERANEN, On the k-freness of morphisms on free monoids, Ann. Acad.
Sci. Fennicae 61, 1986.

[24] Y. KoBayAsHI, Enumeration of irreductible binary words, Discrete Appl.
Math.20 (1988), 221-232.

[25] M. LoTHAIRE, Combinatorics on Words, Addison-Wesley, 1983.

[26] J. H. LoxToN, A. J. VAN DER POORTEN, Arithmetic properties of the so-
lutions of a class of functional equations, J. reine angew. Math. 330 (1982),
159-172.

[27] A. A. Markov, Imossibility of certain algorithms in the theory of associa-
tive systems Dokl. Akad. Nauk. SSSR 55 (1941), 587-590.

[28] M. MoRSE, Recurrent geodesics on a surface of negative curvature, Trans-
actions Amer. Math. Soc. 22 (1921), 84-100.

[29] J. MOULIN-OLLAGNIER, Preuve de la conjecture de Dejean pour des alpha-
bets & 5, 6, 7, 8, 9 lettres, Prépublication du département de mathématique
et informatique, Université Paris-Nord, Nr. 89—4, 1989.

[30] J.-J. PansioT, A propos d'une conjecture de F. Dejean sur les répétitions
dans les mots, Discrete Appl. Math.7 (1984), 297-311.



DIDLIOVGRANITY "

[31] E. L. Post, Recursive unsolvability of a problem of Thue, J. Symbolic
Logic 11 (1947), 1-11.

[32] M. E. PROUHET, Mémoire sur quelques relations entre les puissances des
nombres, C. R. Acad. Sci. Paris. 33 (1851), 31.

[33] A. REsTIvO, S. SALEMI, Overlap-free words on two symbols, in: Automata
on infinite words, Nivat, Perrin (eds), Lect. Notes Comp. Sci.,192, Springer-
Verlag, 1985, 198-206.

[34] P. RoTH, Every binary pattern of length six is avoidable on the two-letter
alphabet, Acta Informatica (1992).

[35] G. ROZENBERG, A. SALOMAA, The Mathematical Theory of L-Systems,
Academic Press, 1980.

[36)] W. RUDIN, Some theorems on Fourier coefficients, Proc. Amer. Math. Soc.
10 (1959), 855-859.

[37] A. SALomAA, Jewels of Formal Language Theory, Computer Science Press,
1981.

[38] M. SAPIR, Inherently nonfinitely based finite semigroups, Mat. Sh. 133
(1987), 154-166.

[39] U. ScumipT, Avoidable patterns on two letters, Theoret. Comput. Sci. 63
(1989), 1-17.

[40] P. SEEBOLD, Sequences generated by infinitely iterated morphisms, Dis-
crete Appl. Math.11, (1985), 255-264.

[41] H. S. SuaPirO, Extremal problems for polynomials and power series, The-
sis, M.I.T., 1951.

[42] R. SHELTON, Aperiodic words on three symbols I, J. Reine Angew. Math.
321 (1981), 195-209.

[43] R. SHELTON, Aperiodic words on three symbols 11, J. Reine Angew. Math.
327 (1981), 1-11.

[44] R. SHELTON, R. SONI, Aperiodic words on three symbols III, J. Reine
Angew. Math. 330 (1982), 44-52.

[45] R. SuELTON, R. SONI, Chains and fixing blocks in irreducible sequences,
Discrete Math.54 (1985), 93-99.

[46] A. THUE, Uber unendliche Zeichenreihen, Kra. Vidensk. Selsk. Skrifter. I.
Mat.-Nat. Kl., Christiana 1906, Nr. 7.



DIDLIVGRANITY

[47] A. Tuuk, Die Losung eines Spezialfalles eines generellen logischen Prob-
lems, Kra. Vidensk. Selsk. Skrifter. I. Mat.-Nat. KI., Christiana 1910, Nr. 8.

[48] A. THUE, Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen,
Kra. Vidensk. Selsk. Skrifter. I. Mat.-Nat. Kl., Christiana 1912, Nr. 10.

[49] A. THUE, Probleme iiber Verdnderungen von Zeichenreihen nach gegebenen
Regeln, Kra. Vidensk. Selsk. Skrifter. I. Mat.-Nat. Kl., Christiana 1914,
Nr. 7.

[50] A. THUE, Selected Mathematical Papers, edited by T. Nagell, A. Selberg,
S. Selberg, K. Thalberg, Universitetsforlaget, Oslo 1977.

[51] A. I. ZimiN, Blocking sets of terms, Math. USSR Sh. 47, (1984), 353-364.



biprefix, 5

characterized, 65
closed, 18
comma-free, 36, 65
cube-free, 15

deciphering delay, 54
extension, 17

factor, 4
factor-free, 36

length increasing, 5

minimal, 7
morphic word, 5
morphism, 4
Morse blocks, 6

necklace, 4
nonerasing, 5

open, 18
overlap, 4
overlap-free, 4

palindrome, 4
prefix, 4, 5

reversal, 4
right extension, 21

shift operator, 5
square, 4
square-free, 4
subshift, 7
suffix, 5

Index

81

symbolic dynamical system, 7

tree, 21
uniformly recurrent, 7

word, 4
word, empty, 4



