Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #52 Jan 04 2024 09:12:21
%S 0,1,2,11,36,149,550,2143,8136,31273,119498,457907,1752300,6709949,
%T 25685998,98341639,376485264,1441362001,5518120850,21125775707,
%U 80878397364,309637224677,1185423230902,4538307034543,17374576685400
%N a(n) = 2*a(n-1) + 7*a(n-2), with a(0) = 0, a(1) = 1.
%C The same sequence may be obtained by the following process. Starting a priori with the fraction 1/1, the denominators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 8 times the bottom to get the new top. The limit of the sequence of fractions is sqrt(8). - _Cino Hilliard_, Sep 25 2005
%C Pisano period lengths: 1, 2, 8, 4, 24, 8, 3, 8, 24, 24, 15, 8, 168, 6, 24, 16, 16, 24, 120, 24, ... . - _R. J. Mathar_, Aug 10 2012
%D John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.
%H Vincenzo Librandi, <a href="/A015519/b015519.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,7).
%F From Mario Catalani (mario.catalani(AT)unito.it), Apr 23 2003: (Start)
%F a(n) = a(n-1) + A083100(n-2), n>1.
%F A083100(n)/a(n+1) converges to sqrt(8). (End)
%F From _Paul Barry_, Jul 17 2003: (Start)
%F G.f.: x/ ( 1-2*x-7*x^2 ).
%F a(n) = ((1+2*sqrt(2))^n-(1-2*sqrt(2))^n)*sqrt(2)/8. (End)
%F E.g.f.: exp(x)*sinh(2*sqrt(2)*x)/(2*sqrt(2)). - _Paul Barry_, Nov 20 2003
%F Second binomial transform is A000129(2n)/2 (A001109). - _Paul Barry_, Apr 21 2004
%F a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-k-1, k)*(7/2)^k*2^(n-k-1). - _Paul Barry_, Jul 17 2004
%F a(n) = Sum_{k=0..n} binomial(n, 2*k+1)*8^k. - _Paul Barry_, Sep 29 2004
%F G.f.: G(0)*x/(2*(1-x)), where G(k)= 1 + 1/(1 - x*(8*k-1)/(x*(8*k+7) - 1/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, May 26 2013
%t LinearRecurrence[{2,7},{0,1},30] (* _Harvey P. Dale_, Oct 09 2017 *)
%o (Sage) [lucas_number1(n,2,-7) for n in range(0, 25)] # _Zerinvary Lajos_, Apr 22 2009
%o (Magma) [ n eq 1 select 0 else n eq 2 select 1 else 2*Self(n-1)+7*Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Aug 23 2011
%o (PARI) a(n)=([0,1; 7,2]^n*[0;1])[1,1] \\ _Charles R Greathouse IV_, May 10 2016
%Y The following sequences (and others) belong to the same family: A000129, A001333, A002532, A002533, A002605, A015518, A015519, A026150, A046717, A063727, A083098, A083099, A083100, A084057.
%K nonn,easy
%O 0,3
%A _Olivier Gérard_