OFFSET
0,1
COMMENTS
If x is either of the roots of x^2 - 6*x + 1 = 0 (i.e., x = 3 +- 2*sqrt(2)), then x^(2^n) + 1 = a(n)*x^(2^(n-1)). For example, x^8 + 1 = 1154*x^4. - James East, Oct 05 2018
REFERENCES
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 376.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10
P. Liardet and P. Stambul, Series d'Engel et fractions continuees, Journal de Théorie des Nombres de Bordeaux 12 (2000), 37-68.
E. Lucas, Théorie des Fonctions Numériques Simplement Périodiques, II, Amer. J. Math., 1 (1878), 289-321.
Jeffrey Shallit, An interesting continued fraction, Math. Mag., 48 (1975), 207-211.
J. Shallit, An interesting continued fraction, Math. Mag., 48 (1975), 207-211. [Annotated scanned copy]
J. Shallit & N. J. A. Sloane, Correspondence 1974-1975
Wikipedia, Engel Expansion
FORMULA
a(n) = ceiling(c^(2^n)) where c = 3 + 2*sqrt(2) is the largest root of x^2 - 6x + 1 = 0. - Benoit Cloitre, Dec 03 2002
From Paul D. Hanna, Aug 11 2004: (Start)
a(n) = (3+sqrt(8))^(2^n) + (3-sqrt(8))^(2^n).
Sum_{n>=0} 1/(Product_{k=0..n} a(k) ) = 3 - sqrt(8). (End)
a(n) = 2*A001601(n+1).
a(n-1) = Round((1 + sqrt(2))^(2^n)). - Artur Jasinski, Sep 25 2008
a(n) = 2*T(2^n,3) where T(n,x) is the Chebyshev polynomial of the first kind. - Leonid Bedratyuk, Mar 17 2011
Engel expansion of 3 - 2*sqrt(2). Thus 3 - 2*sqrt(2) = 1/6 + 1/(6*34) + 1/(6*34*1154) + .... See Liardet and Stambul. - Peter Bala, Oct 31 2012
From Peter Bala, Nov 11 2012: (Start)
4*sqrt(2)/7 = Product_{n >= 0} (1 - 1/a(n))
sqrt(2) = Product_{n >= 0} (1 + 2/a(n)).
a(n) - 1 = A145505(n+1). (End)
From Peter Bala, Dec 06 2022: (Start)
a(n) = 2 + 4*Product_{k = 0 ..n-1} (a(k) + 2) for n >= 1.
Let b(n) = a(n) - 6. The sequence {b(n)} appears to be a strong divisibility sequence, that is, gcd(b(n),b(m)) = b(gcd(n,m)) for n, m >= 1. (End)
MAPLE
a:= n-> simplify(2*ChebyshevT(2^n, 3), 'ChebyshevT'):
seq(a(n), n=0..7);
MATHEMATICA
a[1] := 6; a[n_] := a[n - 1]^2 - 2; Table[a[n], {n, 1, 8}] (* Stefan Steinerberger, Apr 11 2006 *)
Table[Round[(1 + Sqrt[2])^(2^n)], {n, 1, 7}] (* Artur Jasinski, Sep 25 2008 *)
NestList[#^2-2&, 6, 10] (* Harvey P. Dale, Nov 11 2011 *)
PROG
(PARI) a(n)=if(n<1, 6*(n==0), a(n-1)^2-2)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved