%I M4103 N1702 #30 Jun 18 2022 08:42:34
%S 0,6,-12,-156,1680,21264,-592032,-5349216,381679872,1095380736,
%T -384803443200,2445989918208,547003852781568
%N Specific heat for diamond.
%C a(n)/(n!*(-4)^n) must be equal to a_n given in Table 2 of the Oitmaa's paper. Domb & Wood's a(1)-a(7) satisfy this relation, a(8) = -5712096 and a(9) = 390388992 do not. The terms in the Data section are unambiguously retrieved from a_n. The next term a(14) is approximately -10793475537844224. The last given digit of a_8 is probably a typo. - _Andrey Zabolotskiy_, Jun 18 2022
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H C. Domb and D. Wood, <a href="https://doi.org/10.1088/0370-1328/86/1/302">On high-temperature expansions for the Heisenberg model</a>, Proc. Physical Soc., 86 (1965), 1-16.
%H J. Oitmaa, <a href="https://doi.org/10.1088/1361-648X/aab22c">Diamond lattice Heisenberg antiferromagnet</a>, J. Phys.: Condens. Matter, 30 (2018), 155801.
%H <a href="/index/Sp#specific_heat">Index entries for sequences related to specific heat</a>
%Y Cf. A002923, A002165, A002167, A002169.
%K sign,more
%O 1,2
%A _N. J. A. Sloane_
%E a(8)-a(9) corrected, a(10)-a(13) added by _Andrey Zabolotskiy_, Jun 18 2022 using Oitmaa's data